Page 5 of 7
Journal of the American Chemical Society
1
2
3
4
5
6
7
8
9
tions. Chem. Soc. Rev. 2011, 40, 4539. (b) Parmar, D.; Sugiono, E.; Raja,
Financial support from NSF of China (21332003, 21402051,
21773313) and the Program for Guangdong Introducing Innova-
tive and Entrepreneurial Teams (No. 2016ZT06Y337) is greatly
acknowledged.
S.; Rueping, M. Complete Field Guide to Asymmetric BINOL-Phosphate
Derived Brønsted Acid and Metal Catalysis: History and Classification by
Mode of Activation; Brønsted Acidity, Hydrogen Bonding, Ion Pairing,
and Metal Phosphates. Chem. Rev. 2014, 114, 9047. (c) Akiyama, T.;
Mori, K. Chem. Rev. 2015, 115, 9277. (d) Reid, J.; Simón, L.; Goodman, J.
A Practical Guide for Predicting the Stereochemistry of Bifunctional
Phosphoric Acid Catalyzed Reactions of Imines. Acc. Chem. Res. 2016, 49,
1029. (e) Yu, J.; Shi, F.; Gong, L. Brønsted-Acid-Catalyzed Asymmetric
Multicomponent Reactions for the Facile Synthesis of Highly
Enantioenriched Structurally Diverse Nitrogenous Heterocycles. Acc.
Chem. Res. 2011, 44, 1156.
(5) (a) Ren, Y.; Zhu, S.; Zhou. Q. Chiral Proton-Transfer Shuttle Catalysts
for Carbene Insertion Reactions. Org. Biomol. Chem. 2018, 16, 3087. (b)
Zhu, S.; Zhou, Q. Transition-Metal-Catalyzed Enantioselective Heteroa-
tom–Hydrogen Bond Insertion Reactions. Acc. Chem. Res. 2012, 45, 1365.
(6) For reviews: (a) Guo, X.; Hu, W. Novel Multicomponent Reactions via
Trapping of Protic Onium Ylides with Electrophiles. Acc. Chem. Res.
2013, 46, 2427. (b) Zhang, D; Hu, W. Asymmetric Multicomponent Reac-
tions Based on Trapping of Active Intermediates. Chem. Rec. 2017, 17,
739. (c) Tang, M.; Xing, D.; Cai, M.; Hu, W. Diazo Compounds-Involved
Catalytic Asymmetric Multicomponent Reactions. Chin. J. Org. Chem.
2014, 34, 1268.
(7) Selected examples of the trapping of ylides, see: (a) Hu, W. H.; Xu, X.
F.; Zhou, J.; Liu, W. J.; Huang, H. X.; Hu, J.; Yang, L. P.; Gong, L. Z.
Cooperative Catalysis with Chiral Brønsted Acid-Rh2(OAc)4: Highly
Enantioselective Three-Component Reactions of Diazo Compounds with
Alcohols and Imines. J. Am. Chem. Soc. 2008, 130, 7782. (b) Jiang, J.; Xu,
H.-D.; Xi, J.-B.; Ren, B.-Y.; Lv, F.-P.; Guo, X.; Jiang, L.-Q.; Zhang, Z.-Y.;
Hu, W. H. Diastereoselectively Switchable Enantioselective Trapping of
Carbamate Ammonium Ylides with Imines. J. Am. Chem. Soc. 2011, 133,
8428. (c) Zhang, D.; Zhou, J.; Xia, F.; Kang, Z.; Hu, W. Bond Cleavage,
Fragment Modification and Reassembly in Enantioselective Three-
Component Reactions. Nat. Commun. 2015, 6, 5801. (d) Kang, Z.; Zhang,
D.; Shou, J.; Hu, W. Enantioselective Trapping of Oxonium Ylides by 3-
Hydroxyisoindolinones via a Formal SN1 Pathway for Construction of
Contiguous Quaternary Stereocenters. Org. Lett. 2018, 20, 983.
(8) MCRs via the trapping of zwitterionic intermediates, see: (a) Qiu, H.;
Li, M.; Jiang, L.-Q.; Lv, F.-P.; Zan, L.; Zhai, C.-W.; Doyle, M. P.; Hu,
W.-H. Highly Enantioselective Trapping of Zwitterionic Intermediates by
Imines. Nat. Chem. 2012, 4, 733. (b) Zhang, D.; Qiu, H.; Jiang, L.; Lv, F.;
Ma, C.; Hu, W. Enantioselective Palladium(II) Phosphate Catalyzed
Three-Component Reactions of Pyrrole, Diazoesters, and Imines. Angew.
Chem., Int. Ed. 2013, 52, 13356. (c) Jia, S.; Xing, D.; Zhang, D.; Hu, W.
Catalytic Asymmetric Functionalization of Aromatic C-H Bonds by Elec-
trophilic Trapping of Metal-Carbene-Induced Zwitterionic Intermediates.
Angew. Chem., Int. Ed. 2014, 53, 13098. (d) Jing, C.; Xing, D.; Hu, W.
Catalytic Asymmetric Four-Component Reaction for the Rapid Construc-
tion of 3,3-Disubstituted 3-Indol-3′-yloxindoles. Org. Lett. 2015, 17, 4336.
(9) (a) Phipps, R.; Hamilton, G.; Toste, F. D. The Progression of Chiral
Anions from Concepts to Applications in Asymmetric Catalysis. Nat.
Chem. 2012, 4, 603. (b) Mahlau, M.; List, B. Asymmetric Counteranion-
Directed Catalysis: Concept, Definition, and Applications. Angew. Chem.,
Int. Ed. 2013, 52, 518. (c) Brak, K.; Jacobsen, E. N. Asymmetric Ion-
Pairing Catalysis. Angew. Chem., Int. Ed. 2013, 52, 534.
REFERENCES
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(1) (a) Miroshnikova, O.; Hudson, T.; Gerena, L.; Kyle, D.; Lin, A. Syn-
thesis and Antimalarial Activity of New Isotebuquine Analogues. J. Med.
Chem. 2007, 50, 889. (b) Miyamoto, Y.; Banno, Y.; Yamashita, T.; Fu-
jimoto, T.; Oi, S.; Moritoh, Y.; Asakawa, T.; Kataoka, O.; Yashiro, H.;
Takeuchi, K.; Suzuki, N.; Ikedo, K.; Kosaka, T.; Tsubotani, S.; Tani, A.;
Sasaki, M.; Funami, M.; Amano, M.; Yamamoto, Y.; Aertgeerts, K.; Yano,
J.; Maezaki, H. Discovery of a 3-Pyridylacetic Acid Derivative (TAK-100)
as a Potent, Selective and Orally Active Dipeptidyl Peptidase IV (DPP-4)
Inhibitor. J. Med. Chem. 2011, 54, 831. (c) Bolea, I.; Juárez Jiménez, J.;
de los Ríos, C.; Chioua, M.; Pouplana, R.; Luque, F. J.; Unzeta, M.;
Marco-Contelles, J.; Samadi, A. Synthesis, Biological Evaluation, and
Molecular Modeling of Donepezil and N-[(5-(Benzyloxy)-1-methyl-1H-
indol-2-yl)methyl]-N-methylprop-2-yn-1-amine
Hybrids
as
New
Multipotent Cholinesterase/Monoamine Oxidase Inhibitors for the Treat-
ment of Alzheimer’s Disease. J. Med. Chem. 2011, 54, 8251. (d)
Frasinyuk, M.; Mrug, G.; Bondarenko, S.; Sviripa, V.; Zhang, W.; Cai, X.;
Fiandalo, M.; Mohler, J.; Liu, C.; Watt, D. Application of Mannich Bases
to the Synthesis of Hydroxymethylated Isoflavonoids as Potential
Antineoplastic Agents. Org. Biomol. Chem. 2015, 13, 11292. (e) Numajiri,
Y.; Pritchett, B.; Chiyoda, K.; Stoltz, B. Enantioselective Synthesis of α-
Quaternary Mannich Adducts by Palladium-Catalyzed Allylic Alkylation:
Total Synthesis of (+)-Sibirinine. J. Am. Chem. Soc. 2015, 137, 1040. (f)
Hoang, T.; Huynh, T.; Do, T.; Nguyen, T. Mannich Aminomethylation
of Flavonoids and anti-Proliferative Pctivity Against Breast Cancer
Cell. Chem. Pap. 2018, 72, 1399.
(2) Selected examples see: (a) Xie, Y.; Hu, J.; Wang, Y.; Xia, C.; Huang,
H. Palladium-Catalyzed Vinylation of Aminals with Simple Alkenes: A
New Strategy to Construct Allylamines. J. Am. Chem. Soc. 2012, 134,
20613. (b) Wu, L.; Fleischer, I.; Jackstell, R.; Beller, M. Efficient and
Regioselective Ruthenium-catalyzed Hydroaminomethylation of Olefins.
J. Am. Chem. Soc. 2013, 135, 3989. (c) Fujii, S.; Konishi, T.; Matsumoto,
Y.; Yamaoka, Y.; Takasu, K.; Yamada, K. Radical Aminomethylation of
Imines. J. Org. Chem. 2014, 79, 8128. (d) Gülak, S.; Wu, L.; Liu, Q.;
Franke, R.; Jackstell, R.; Beller, M. Phosphine- and Hydrogen-Free: High-
ly Regioselective Ruthenium-Catalyzed Hydroaminomethylation of Ole-
fins. Angew. Chem., Int. Ed. 2014, 53, 7320. (e) Mondal, S.; Samanta, S.;
Singsardar, M.; Hajra, A. Aminomethylation of Imidazoheterocycles with
Morpholine. Org. Lett. 2017, 19, 3751. (f) Remeur, C.; Kelly, C.; Patel, N.;
Molander, G. A. Aminomethylation of Aryl Halides Using α-Silylamines
Enabled by Ni/Photoredox Dual Catalysis. ACS Catal. 2017, 7, 6065. (g)
Dai, J.; Shao, N.; Zhang, J.; Jia, R.; Wang, D. Cu(II)-Catalyzed ortho-
Selective Aminomethylation of Phenols. J. Am. Chem. Soc. 2017, 139,
12390. (h) Kim, S.; Hong, S. Ruthenium‐Catalyzed Aminomethylation
and Methylation of Phenol Derivatives Utilizing Methanol as the C1
Source. Adv. Synth. Catal. 2017, 359, 798.
(3) (a) Ibrahem, I.; Casas, J.; Córdova, A. Direct Catalytic
Enantioselective α-Aminomethylation of Ketones. Angew. Chem., Int. Ed.
2004, 43, 6528. (b) Chi, Y.; Gellman, S. H. Enantioselective
Organocatalytic Aminomethylation of Aldehydes:ꢀ A Role for Ionic Inter-
actions and Efficient Access to β2-Amino Acids. J. Am. Chem. Soc. 2006,
128, 6804. (c) Hamashima, Y.; Sasamoto, N.; Umebayashi, N.; Sodeoka,
M. PdII-Catalyzed Asymmetric Addition Reactions of 1,3-Dicarbonyl
Compounds: Mannich-Type Reactions with N-Boc Imines and Three-
Component Aminomethylation. Chem. Asian J. 2008, 3, 1443. (d) Xu, J.;
Chen, X.; Wang, M.; Zheng, P.; Song, B.-A.; Chi, Y. R.
Aminomethylation of Enals through Carbene and Acid Cooperative Catal-
ysis: Concise Access to β2-Amino Acids. Angew. Chem., Int. Ed. 2015, 54,
5161. (e) Lian, X.; Lin, L.; Fu, K.; Ma, B.; Liu, X.; Feng, X. A New Ap-
proach to the Asymmetric Mannich Reaction Ccatalyzed by Chiral N,N′-
Dioxide-Metal Complexes. Chem. Sci. 2017, 8, 1238. (f) You, Y.; Zhang,
L.; Cui, L.; Mi, X.; Luo, S. Catalytic Asymmetric Mannich Reaction with
N-Carbamoyl Imine Surrogates of Formaldehyde and Glyoxylate. Angew.
Chem., Int. Ed. 2017, 56, 13814.
(10) Selected examples see: (a) Mayer, S.; List, B. Asymmetric
Counteranion-Directed Catalysis. Angew. Chem., Int. Ed. 2006, 45, 4193.
(b) Peterson, E.; Jacobsen, E. N. Enantioselective, Thiourea-Catalyzed
Intermolecular Addition of Indoles to Cyclic N-Acyl Iminium Ions. Angew.
Chem., Int. Ed. 2009, 48, 6328. (c) Muratore, M.; Holloway, C.; Pilling,
A.; Storer, R.; Trevitt, G.; Dixon, D. Enantioselective Brønsted Acid-
Catalyzed N-Acyliminium Cyclization Cascades. J. Am. Chem. Soc. 2009,
131, 10796. (d) Xie, Y.; Zhao, Y.; Qian, B.; Yang, L.; Xia, C.; Huang, H.
Enantioselective N-H Functionalization of Indoles with α, β-Unsaturated
γ-Lactams Catalyzed by Chiral Brønsted Acids. Angew. Chem., Int. Ed.
2011, 50, 5682. (e) Neel, A.; Hehn, J.; Tripet, P.; Toste, F. D. Asymmetric
Cross-Dehydrogenative Coupling Enabled by the Design and Application
of Chiral Triazole-Containing Phosphoric Acids. J. Am. Chem. Soc. 2013,
135, 14044. (f) Qian, D.; Chen, M.; Bissember, A.; Sun J. Counterion-
Induced Asymmetric Control in Ring-Opening of Azetidiniums: Facile
Access to Chiral Amines. Angew. Chem., Int. Ed. 2018, 57, 3763.
(4) (a) Rueping, M.; Kuenkel, A.; Atodiresei, I. Chiral Brønsted Acids in
Enantioselective Carbonyl Activations-Activation Modes and Applica-
(11) Lee, S.; Kaib, P.; List, B. Asymmetric Catalysis via Cyclic, Aliphatic
Oxocarbenium Ions. J. Am. Chem. Soc. 2017, 139, 2156.
ACS Paragon Plus Environment