Page 5 of 5
Dalton Transactions
DOI: 10.1039/C6DT01166G
the activation energy equals the bandgap divided by two. The Cuꢀ
C2 activation energy is significantly smaller than that of NiꢀC2
and does not correspond to a similar transition in the electronic
absorption measurements. For CuꢀC2 (Fig. 5) the absorption
onset around 2000 nm corresponds to a separation of 0.6 eV. This
suggests that the extra unpaired electron in the radical CuꢀC2 is
playing a role, giving an exceptionally low activation energy. The
resulting, almostꢀmetallic behaviour, is reminiscent of the
isoelectronic Auꢀbisꢀdithiolene complexes that show metallic
8. U. T. MuellerꢀWesterhoff, B. Vance, and D. I. Yoon,
Tetrahedron,1991, 47, 909ꢀ 932
9
1
.
J. Fabian, H. Nakazumi, and M. Matsuoka, Chem. Rev., 1992, 92,
1197ꢀ1226.
6
5
0. J.ꢀY. Cho, B. Domercq, S. C. Jones, J. Yu, X. Zhang, Z. An, M.
5
Bishop, S. Barlow, S. R. Marder, and B. Kippelen, J. Mater. Chem.,
2
007, 17, 2642ꢀ2647.
11. J. Nunes, M. Figueira, D. Belo, I. Santos, B. Ribeiro, E. Lopes, R.
Henriques, J. VidalꢀGancedo, J. Veciana, C. Rovira, M. Almeida,
Chem. Eur. J., 2007, 13, 9841ꢀ9849.
70
1
5
1
1
2. R. Eisenberg, H. B. Gray, Inorg. Chem. 2011, 50, 9741
3. H. Alves, A. I. S. Neves, W. Gouveia, R. A. L. Silva, D. Belo,
Chem. Commun., 2015, 51, 13117
1
0
conductivity.
75
14. H. Cui, H. Kobayashi, S. Ishibashi, M. Sasa, F. Iwase, R. Kato, A.
Conclusions
Kobayashi, J. Am. Chem. Soc. 2014, 136, 7619
1
5. D. Belo, H. Alves, E. B. Lopes, M. T. Duarte, V. Gama, R. T.
Henriques, M. Almeida, A. PerezꢀBenltez, C. Rovira, J. Veciana,
Chem. Eur. J. 2001, 7, 511
We have achieved highlyꢀconducting thin films of neutral metalꢀ
bisꢀdithiolene complexes, which in the case of M = Cu shows
1
2
2
5
0
5
nearly metallic properties. This adds distinctive new examples to 80 16. E. Fujiwara, A. Kobayashi, H. Fujiwara, H. Kobayashi, Inorg.
Chem., 2004, 43, 1122.
the limited group of such highlyꢀconducting singleꢀcomponent
1
7. W. E. Buschmann, S. C. Paulson, C. M. Wynn, M. A. Girtu, A. J.
molecular materials. As is inevitable for molecular
semiconductors, our extension of the electronic delocalisation to
increase intermolecular interaction also reduced the solublity of
the neutral complexes and precluded solution processing. To
Epstein, H. S. White and J. S. Miller, Chem. Mater., 1998, 10,
1
386–1395.
8
9
9
5
0
5
18. D. Lincot, Thin Solid Films, 2005, 487, 40–48.
1
9. C. J. Hibberd, E. Chassaing, W. Liu, D. B. Mitzi, D. Lincot and A.
overcome this, we applied
a molecular electrodeposition
N. Tiwari, Prog. Photovoltaics, 2010, 18, 434–452.
approach, which we previously introduced, enabling solution
processing via the soluble anionic complexes. This approach
offers the possibility to further extend conjugation on the
molecules, while still maintaining solution processability.
20. A. P. Samantilleke, M. Sahal, L. Ortiz, M. F. Cerqueira and B. Mari,
Thin Solid Films, 2011, 519, 7272ꢀ7275
21. E. Allwright, D. M. Berg, R. Djemour, M. Steichen, P. J. Dale, N.
Robertson, J. Mater. Chem. C, 2014, 2, 7232.
2
2
2
2
2. S. Dalgleish, H. Yoshikawa, M. M. Matsushita, K. Awaga and N.
Robertson, Chem. Sci., 2010, 2, 316ꢀ320.
3. S. Dalgleish, K. Awaga and N. Robertson, Chem. Commun., 2011,
47, 7089ꢀ7091.
Acknowledgements
4. C. T. Vance, J. H. Welch and R. D. Bereman, Inorg. Chimica Acta,
1
989, 164, 191ꢀ200.
We thank EPSRC for studentship support. The work was
supported by the Fonds National de la Recherche, Luxembourg,
902480. This work was partially supported by a GrantꢀinꢀAid for
Scientific Research from the Ministry of Education, Culture,
Sports, Science, and Technology (MEXT). Funds were also
provided by the JSPS CoreꢀtoꢀCore Program, A. Advanced
Research Networks and the Leverhulme Trust to support the UKꢀ
Japan collaboration.
5. S. Rabaça, A. C. Cerdeira, A. I. S. Neves, S. I. G. Dias, C. Mézière,
I. C. Santos, L. C. J. Pereira, M. Fourmigué, R. T. Henriques and M.
Almeida, Polyhedron, 2009, 28, 1069ꢀ1078.
3
0
1
00
2
6. R. Burns and C. McAuliffe, Adv. Inorg. Chem. Radiochem, 1979,
2
2, 303ꢀ348.
27. A. Gavezzotti and G. Filippini, Synth. Metals,1991, 40, 257ꢀ266,
28. T. Siegrist, C. Kloc, R. A. Laudise, H. E. Katz, and R. C. Haddon,
Adv. Mater., 1998, 10, 379ꢀ382
3
5
105
2
9. L. Antolini, G. Horowitz, F. Kouki, and F. Garnier, Adv. Mater.,
998, 10, 382ꢀ385
1
Notes and references
3
0. R. Isaksson and T. Liljefors, J. Chem. Soc., Perkin Trans.,1981, 2,
a
1344ꢀ1350
EaStCHEM School of Chemistry, The University of Edinburgh, King’s
1
1
1
1
1
10 31. K. Karlin and E. Stiefel, Dithiolene Chemistry: Synthesis,
Properties, and Applications. Progress in Inorganic Chemistry,
Wiley, 2004
Buildings, David Brewster Road, Edinburgh EH9 3FJ, UK, E-mail:
b
4
4
5
5
6
0
5
0
5
0
Department of Chemistry, Graduate School of Science and Research
3
2. K. Ray, T. Weyhermller, F. Neese, and K. Wieghardt, Inorg. Chem.,
005, 44, 5345ꢀ5360
15 33. S. Dalgleish, N. Robertson, Chem. Commun., 2009, 5826ꢀ5828.
Center of Materials Science, Nagoya University, Chikusa-ku, Nagoya ,
2
4
64–8602 , Japan
†
Electronic Supplementary Information (ESI) available: Synthesis of
3
4. K. Ray, S. DeBeer George, E. Solomon, K. Wieghardt, and F.
Neese, Chem. Eur. J., 2007, 13, 2783ꢀ2797
5. A. H. Maki, N. Edelstein, A. Davison, and R. H. Holm, J. Am.
Chem. Soc., 1964, 86, 4580ꢀ4587,
2
compounds and precursors; UV/Vis of TMA[Cu(TiꢀC2) ]; Computational
tables; EPR spectra; SEM of electrodeposited films; resistance against T
plots. See DOI: 10.1039/b000000x/
3
1
.
G. N. Schrauzer and V. Mayweg, J. Am. Chem. Soc., 1962, 84,
221.
N. Robertson and L. Cronin, Coord. Chem. Rev., 2002, 227, 93ꢀ127.
20 36. R. Kirmse, J. Stach, W. Dietzsch, G. Steimecke, and E. Hoyer,
3
Inorg. Chem.,1980, 19, 2679ꢀ2685
2
.
3
3
7. V. Madhu and S. K. Das, Inorg. Chem., 2008, 47, 5055ꢀ5070
8. P. I. Djurovich, E. I. Mayo, S. R. Forrest, and M. E. Thompson,
Org. Elec., 2009, 10, 515ꢀ520
3. T. Kambe, R. Sakamoto, T. Kusamoto, T. Pal, N. Fukui, K.
Hoshiko, T. Shimojima, Z. Wang, T. Hirahara, K. Ishizaka, S.
Hasegawa, F. Liu and H. Nishihara, J. Am. Chem. Soc., 2014, 136,
25 39. J. L. J. Dearling, P. J. Blower, Chem. Commun., 1998, 2531ꢀ2532
4
1
4357ꢀ14360
E. Coronado and P. Day, Chemical Reviews, 2004, 104, 5419ꢀ5448.
5. S. C. Rasmussen. C. M. Amb, Chemical Crystallography, Chapter
, pp. 69ꢀ101, ISBN: 978ꢀ1ꢀ60876ꢀ281ꢀ1, Editors: Bryan L.
0. J. P. Holland, J. C. Green, J. R. Dilworth, Dalton Trans., 2006, 783ꢀ
94
4
.
7
4
1. T. Anjos, S. J. RobertsꢀBleming, A. Charlton, N. Robertson, A. R.
Mount, S. J. Coles, M. B. Hursthouse, M. Kalaji, and P. J. Murphy,
J. Mater. Chem., 2008, 18, 475ꢀ483.
2
Connelly.
30
6
.
S. Dalgleish, M. M. Matsushita, L. Hu, B. Li, H. Yoshikawa, K.
Awaga, J. Am. Chem. Soc. 2012, 134, 12742
4
2. D. Fichou, J. Mater. Chem., 2000, 10, 571ꢀ588
7. L. Qu, Y. Guo, H. Luo, C. Zhong, G. Yu, Y. Liu, J. Qin, Chem.
Commun., 2012, 48, 9965
This journal is © The Royal Society of Chemistry [year]
Journal Name, [year], [vol], 00–00 |5