RSC Advances
Paper
with three vibration mode observed at wavenumbers of 214,
284 cmꢀ1 and 399 cmꢀ1 for all complexes (1–4).
References
Our results are in good agreement with that reported previ-
ously for iron sulde pyrrhotite.48–50 The Raman spectra of
pyrrhotite obtained from the pyrolysis of complexes (1–4) are
presented in Fig. 6 and ESI Fig. S11.†
1 A. K. Dutta, S. K. Maji, D. N. Srivastava, A. Mondal, P. Biswas,
P. Paul and B. Adhikary, ACS Appl. Mater. Interfaces, 2012, 4,
1919–1927.
2 D. Jasion, J. M. Barforoush, Q. Qiao, Y. Zhu, S. Ren and
K. C. Leonard, ACS Catal., 2015, 5, 6653–6657.
3 H. Geng, L. Zhu, W. Li, H. Liu, L. Quan, F. Xi and X. Su,
J. Power Sources, 2015, 281, 204–210.
4 M. R. Gao, Y.-F. Xu, J. Jiang and S.-H. Yu, Chem. Soc. Rev.,
2013, 42, 2986–3017.
5 H. Chen, L. Zhu, H. Liu and W. Li, J. Power Sources, 2014,
112(245), 406.
6 X. Chen, Z. Wang, X. Wang, J. Wan, J. Liu and Y. Qian, Inorg.
Chem., 2005, 44, 951–954.
7 H. Wang and I. Salveson, Phase Transform., 2005, 78, 547.
8 S. Mlowe, D. J. Lewis, M. A. Malik, J. Raery, E. B. Mubofu,
P. O'Brien and N. Revaprasadu, Dalton Trans., 2016, 45,
2647–2655.
9 J. Puthussery, S. Seefeld, N. Berry, M. Gibbs and M. Law,
J. Am. Chem. Soc., 2011, 133, 716–719.
10 K. Ramasamy, M. A. Malik, N. Revaprasadu and P. O'Brien,
Chem. Mater., 2013, 25, 3551–3569.
ꢂ
SEM images of the iron sulde crystallites growth at 400 C
and 500 ꢂC derived from the thermolysis of complex (1) are
presented in Fig. 7. The morphology of crystallites at growth
temperatures of 300 ꢂC (ESI Fig. S12†) and 400 ꢂC showed
clusters of densely packed crystallites, whilst hexagonal crys-
ꢂ
tallites were observed at a growth temperature of 500 C. SEM
images from the pyrolysis of precursor [Fe(S2COEt)3] (2) at
300 ꢂC (ESI Fig. S13†) and 400 and 500 ꢂC are shown in Fig. 7. At
all growth temperatures of 300–500 ꢂC, regular spherical-like
crystallites were observed. SEM images of iron sulde crystals
grown from the pyrolysis of [Fe(S2COiPr)3] (3) and [Fe(S2-
COnPr)3] (4) exhibited similar morphologies with spherical-like
crystals observed and with considerable variation in particle
size as shown in Fig. 7. The morphology of crystallites obtained
from complexes (1–4) was clearly dependent on the temperature
and the type of precursor.
11 S. A. Kissin and S. D. Scott, Econ. Geol., 1982, 77, 1739.
12 D. Rickard and G. W. Luther, Chem. Rev., 2007, 107, 514–562.
13 P. Bai, S. Zheng, C. Chen and H. Zhao, Cryst. Growth Des.,
2014, 14, 4295–4302.
14 K. Ramasamy, M. A. Malik, M. Helliwell, F. Tuna and
P. O'Brien, Inorg. Chem., 2010, 49, 8495–8503.
Conclusion
In summary, a series of iron alkyl xanthate complexes,
including [Fe(S2COMe)3] (1) [Fe(S2COEt)3] (2) [Fe(S2COiPr)3] (3)
and [Fe(S2COnPr)3] (4) have been successfully synthesised, using
a single-source route. The X-ray crystal structures of [Fe(S2-
COiPr)3] (3) and [Fe(S2COnPr)3] (4) have been determined. These
four complexes were used for the deposition of iron sulde
crystallites. Two simple methods have been described for the
growth of iron sulde nanocrystals which are spin coating and
solventless pyrolysis methods. Different deposition parameters
such as deposition method, deposition temperature and
precursor type were investigated in this study. The deposited
iron sulde phases and the morphology of iron sulde crystal-
lites were signicantly inuenced by the deposition method
used. p-XRD results revealed the formation of troilite when
a spin coat-annealing method was used while iron sulde
pyrrhotite Fe1ꢀxS was mainly formed when the solventless
pyrolysis method was used. Both methods are promising for the
low temperature production of iron sulde materials with
control of the crystalline phase produced.
¨
15 R. Schieck, A. Hartmann, S. Fiechter, R. Konenkamp and
H. Wetzel, J. Mater. Res., 1990, 5, 1567–1572.
´
16 I. Dodony, M. Posfai and A. R. Buseck, Am. Mineral., 1996, 81,
119–125.
17 D. Fan, M. Afzaal, M. A. Mallik, C. Q. Nguyen, P. O'Brien and
P. J. Thomas, Coord. Chem. Rev., 2007, 251, 1878–1888.
18 P. D. Matthews, P. D. McNaughter, D. J. Lewis and P. O'Brien,
Chem. Sci., 2017, 8, 4177–4187.
19 P. Matthews, M. Akhtar, M. Malik, N. Revaprasadu and
P. O'Brien, Dalton Trans., 2016, 45, 18803–18812.
20 J. Puthussery, S. Seefeld, N. Berry, M. Gibbs and M. Law,
J. Am. Chem. Soc., 2010, 133, 716–719.
21 C. Steinhagen, T. B. Harvey, C. J. Stolle, J. Harris and
B. A. Korgel, J. Phys. Chem. Lett., 2012, 3, 2352–2356.
22 C. Xu, Y. Zeng, X. Rui, N. Xiao, J. Zhu, W. Zhang, J. Chen,
W. Liu, H. Tan, H. H. Hng and Q. Yan, ACS Nano, 2012, 6,
4713–4721.
23 F. Cao, W. Hu, L. Zhou, W. Shi, S. Song, Y. Lei, S. Wang and
H. Zhang, Dalton Trans., 2009, 42, 9246–9252.
24 S. Kar and S. Chaudhuri, Chem. Phys. Lett., 2004, 398, 22–26.
25 Q. Xuefeng, X. Yi and Q. Yitai, Mater. Lett., 2001, 48, 109–111.
26 K. Anuar, W. Tan, N. Saravanan, S. Ho and S. Gwee, J. Sci.
Technol., 2009, 10, 801–805.
Conflicts of interest
There are no conicts of interest to declare.
27 Y. Zhang, Y. Du, H. Xu and Q. Wang, CrystEngComm, 2010,
12, 3658–3663.
Acknowledgements
LA acknowledges Magmmah Univeristy in Saudi Arabia for
nancial support. DJL and POB thank EPSRC for support (EP/
R022518/1).
28 W. Han and M. Gao, Cryst. Growth Des., 2008, 8, 1023–1030.
29102 | RSC Adv., 2018, 8, 29096–29103
This journal is © The Royal Society of Chemistry 2018