5 were detected. We generated the same intermediate 7/8 from
our previous work by the treatment of Ti(NtBu)Cl2Py2 (2a)
with t-BuNCO and treated this mixture with aqueous acid,
ethoxide ion and BnNH2 to repeat the results above (Scheme
5). This is strong evidence for the pathway of this reaction
proceeding through intermediate 7 or 8 or some equilibrating
mixture of the two. NMR experiments showed the t-Bu imido
14-electron complexes 10a to be more reactive towards CO2 than
the analagous 2,6-(i-Pr)2Ph complex 10b (Table 1). The formation
of symmetrical urea from 2a upon treatment with CO2 could be
made nearly quantitative by the addition of bis-silylated amines
(eqn (6)). The exact role of the silylated amines is unknown at
present, but could be due to some Lewis acid effect by the silicon
groups and we are investigating this further. This could represent
a very efficient synthetic method for preparing ureas from an easy
to make complex and CO2. However, at present the generality of
this process was restricted by our inability to prepare pure alkyl
(aside from t-Bu) analogues of the complexes 2 and 10. Using an
in situ preparation from TiCl4 and amines we were able to isolate
symmetrical ureas of alkyl amines (eqn (7), Table 2). Interestingly
the yields were moderate with an optimised 3 equivalents, but
near quantitative with a vast excess of amine. This again is
a curious result we are investigating further. Initial attempts
to make the process catalytic in titanium by converting the
presumed titanium oxo complex back to an imido complex have
proven unsuccessful, but is the subject of our current and future
endeavours.
3 (a) M. R. Kember, A. Buchard and C. K. Williams, Chem. Commun.,
2011, 47, 141; (b) D. J. Darensbourg, Chem. Rev., 2007, 107, 2388;
(c) G. W. Coates and D. R. Moore, Angew. Chem., Int. Ed., 2004, 43,
6618; (d) H. Sugimoto and S. Inoue, J. Polym. Sci., Part A: Polym.
Chem., 2004, 42, 5561; (e) K. Nozaki, Pure Appl. Chem., 2004, 76, 541;
(f) C. Koning, J. Wildeson, R. Parton, B. Plum, P. Steemna and D. J.
Darensbourg, Polymer, 2001, 42, 3995.
4 (a) N. Yamazaki, F. Higashi and T. Iguchi, Tetrahedron Lett., 1974, 13,
1191; (b) A. Lorenzo, E. Aller and P. Molina, Tetrahedron, 2009, 65,
1397; (c) R. Nomura, M. Yamamoto and H. Matsuda, Ind. Eng. Chem.
Res., 1987, 26, 1056.
5 (a) D. C. Bradley, M. B. Hursthouse, K. M. A. Malik, A. J. Nielson and
R. L. Shirt, J. Chem. Soc., Dalton Trans., 1983, 2651; (b) L. K. Johnson,
S. C. Virgil and R. H. Grubbs, J. Am. Chem. Soc., 1990, 112, 5384; (c) A.
Antin˜olo, S. Garc´ı-Lledo´, J. M. Ilarduya and A. Otero, J. Organomet.
Chem., 1987, 335, 85; (d) W. A. Hermann, G. Welchselbaumer, R.
A. Paciello, R. A. Fischer, E. Herdtweck, J. Okuda and D. W. Marz,
Organometallics, 1990, 9, 489; (e) D. D. Devore, J. D. Lichtenhan, F.
Takusagawa and E. A. Maata, J. Am. Chem. Soc., 1987, 109, 7408;
(f) A. J. Nielson, M. W. Glenny, C. E. F. Rickard and J. M. Waters, J.
Chem. Soc., Dalton Trans., 2000, 4569; (g) W. B. Cross, J. C. Anderson,
C. Wilson and A. J. Blake, Inorg. Chem., 2006, 45, 4556.
6 (a) R. E. Blake Jr, D. M. Antonelli, L. Henling, W. P. Schaefer, K. I.
Hardcastle and J. E. Bercaw, Organometallics, 1998, 17, 718; (b) R.
Royo and J. Sa´nchez-Nieves, J. Organomet. Chem., 2000, 597, 61; (c) S.
C. Bart, C. Anthon, F. W. Heinmann, E. Bill, N. M. Edelstein and K.
Meyer, J. Am. Chem. Soc., 2008, 130, 12536.
7 (a) D. Swallow, J. M. McInnes and P. Mountford, J. Chem. Soc., Dalton
Trans., 1998, 2253; (b) A. J. Blake, J. M. McInnes, P. Mountford,
G. I. Nikonov, D. Swallow and D. J. Watkin, J. Chem. Soc., Dalton
Trans., 1999, 379; (c) A. E. Guiducci, A. R. Cowley, M. E. G. Skinner
and P. Mountford, J. Chem. Soc., Dalton Trans., 2001, 1392; (d) S.
R. Dubberley, A. Friedrich, D. A. Willman, P. Mountford and U.
Radius, Chem.–Eur. J., 2003, 9, 3634; (e) C. L. Boyd, T. Toupance, B.
R. Tyrrell, B. J. Ward, C. R. Wilson, A. R. Cowley and P. Mountford,
Organometallics, 2005, 24, 309; (f) C. L. Boyd, E. Clot, A. E. Guiducci
and P. Mountford, Organometallics, 2005, 24, 2347; (g) A. E. Guiducci,
C. L. Boyd and P. Mountford, Organometallics, 2006, 25, 1167; (h) S.
C. Dunn, N. Hazari, A. R. Cowley, J. C. Green and P. Mountford,
Organometallics, 2006, 25, 1755.
8 (a) F. Basuli, B. C. Bailey, J. Tomaszewski, J. C. Huffman and D.
J. Mindiola, J. Am. Chem. Soc., 2003, 125, 6052; (b) F. Basuli, B.
C. Bailey, L. A. Watson, J. Tomaszewski, J. C. Huffman and D. J.
Mindiola, Organometallics, 2005, 24, 1886; (c) U. J. Kilgore, F. Basuli,
J. C. Huffman and D. J. Mindiola, Inorg. Chem., 2006, 45, 487.
9 (a) D. S. Glueck, J. Wu, F. J. Hollander and R. G. Bergman, J. Am.
Chem. Soc., 1991, 113, 2041; (b) S.-H. Hsu, Jr.-C. Chang, C.-L. Lai,
C.-H. Hu, H. M. Lee, G.-H. Lee, S.-M. Peng and J.-H. Huang, Inorg.
Chem., 2004, 43, 6786.
Acknowledgements
We thank the University of Nottingham, University College
London and Flexible Foam Research Ltd for funding, Mr. T.
Hollingworth, Mr. D. Hooper, Mr J. Hill and Dr L. Harris for
providing mass spectra and Dr T. Liu and Ms G. Maxwell for
microanalytical data.
Notes and references
1 (a) H. Arakawa, M. Aresta, J. N. Armour, M. A. Barteau, E. J.
Beckman, A. T. Bell, J. E. Bercaw, C. Creutz, E. Dinjus, D. A. Dixon,
K. Domen, D. L. DuBois, C. A. Eckert, E. Fujita, D. H. Gibson, W.
A. Goddard, D. W. Goodman, J. Keller, G. J. Kubas, H. H. Kung, J. E.
Lyons, L. E. Manzer, T. J. Marks, K. Morokuma, K. M. Nicholas, R.
Periana, L. Que, J. Rostrup-Nielson, W. M. H. Sachtler, L. D. Schmidt,
A. Sen, G. A. Somorjai, P. C. Stair, B. R. Stults and W. Tumas, Chem.
Rev., 2001, 101, 953; (b) M. Aresta and A. Dibenedetto, Dalton Trans.,
2007, 2975; (c) T. Sakakura, J.-C. Choi and H. Yasuda, Chem. Rev.,
2007, 107, 2365; (d) Carbon Dioxide as Chemical Feedstock, ed. M.
Aresta, Wiley-VCH, Weinheim, 2010.
10 (a) P. J. Walsh, F. J. Hollander and R. G. Bergman, Organometallics,
1993, 12, 3705; (b) J. C. Anderson and R. B. Moreno, Tetrahedron,
2010, 66, 9182 and references therein.
11 Some examples are: (a) M. B. Dinger and W. Henderson, Chem.
Commun., 1996, 211; (b) P. Mountford, Chem. Commun., 1997, 2127.
12 A. J. Blake, P. E. Collier, S. C. Dunn, W.-S. Li, P. Mountford and O.
V. Shishkin, J. Chem. Soc., Dalton Trans., 1997, 1549 and references
therein.
13 Retrospectively we think that the increased yield of 3a in this experiment
compared to that in eqn (3) can be explained by the extended reaction
time of 16 h versus 5 h .
14 J. B. Alexander, R. R. Schrock, W. M. Davis, K. C. Hultzsch, A. H.
Hoveyda and J. H. Houser, Organometallics, 2000, 19, 3700.
2 N. MacDowell, N. Florin, A. Buchard, J. Hallett, A. Galindo, G.
Jackson, C. S. Adjiman, C. K. Williams, N. Shah and P. Fennell, Energy
Environ. Sci., 2010, 3, 1645.
1338 | Org. Biomol. Chem., 2012, 10, 1334–1338
This journal is
The Royal Society of Chemistry 2012
©