4
Tetrahedron
iPrOH/H2O (1:1, v/v, 4 mL) at room temperature.
b Isolated yields.
C Temperature 100° C
22. Anastas, P. T.; Warner, J. C. In: Green Chemistry: Theory and
Practice; Oxford University Press: Oxford, 1998.
In summary, we have successfully developed a palladium
23. Cornils, B.; Herrmann, W. A.; Horvth, I. T.; Leitner, W.;
Mecking, S.; Olivier-Bourbigou, H.; Vogt, D. Multiphase
Homogeneous Catalysis; Wiley-VCH:Weinheim, 2008; pp 2–23.
24. Typical experimental procedure: In a 50 mL round bottomed
flask, a mixture of aryl halide (1 mmol), arylboronic acid (1.2
mmol), Pd(OAc)2 (1 mol%), urea (0.01 mmol) and K2CO3 (3
catalyzed Suzuki–Miyaura reaction using urea as a ligand in
iPrOH-H2O media under aerobic conditions. This facile, mild,
and low-cost ligand protocol represents, to a certain extent, a new
advance in Suzuki–Miyaura cross-coupling reactions.
i
mmol) in PrOH/H2O (1:1, v/v, 4 mL) and the mixture was stirred
References and notes:
at room temperature for a time period as mentioned in Table 2.
The progress of the reaction was monitored by TLC. After
completion of the reaction it was extracted with diethyl ether (3 x
10 mL) and washed with water. The combined ether extract was
dried over anhydrous Na2SO4. The filtrate was concentrated under
reduced pressure. The product was purified by column
chromatography over silica gel using hexane/ethyl acetate (9:1
v/v) to get the desired coupling product. The products were
characterized by IR, 1H NMR, 13C NMR and GC–MS.
1. (a) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457– 2483; (b)
Phan, N. T. S.; Van Der Sluys, M.; Jones, C. W. Adv. Synth.
Catal. 2006, 348, 609– 679; (c) Blangetti, M.; Rosso, H.; Prandi,
C.; Deagostino, A.; Venturello, P. Molecules 2013, 18, 1188–
1213.
2. (a) Suzuki, A. J. Organomet. Chem. 1999, 576, 147–168; (b)
Organometallics in Synthesis: A Manual; Schlosser, M., Ed.;
Miley: West Sussex, UK, 2002; (c) Stanforth, S. P. Tetrahedron
1998, 54, 263–303; (d) Thompson, L. A.; Ellman, J. A. Chem.
Rev. 1996, 96, 555–600; (e) Tsuji, J. In Palladium Reagents and
Catalysts: Innovations in Organic Synthesis; Wiley: Chichester,
UK, 1995.
3. Kozlowski, M. C.; Morgana, B. J.; Lintona, E. C. Chem. Soc. Rev.
2009, 38, 3193–3207.
4. (a) Korolev, D. N.; Bumagin, N. A. Tetrahedron Lett. 2005, 46,
5751–5754; (b) Tang, X.; Huang, Y.; Liu, H.; Liu, R.; Shen, D.;
Liu, N.; Liu, F. J. Organomet. Chem. 2013, 729, 95–102; (c) Rao,
G. K.; Kumar, A.; Kumar, B.; Kumar, D.; Singh, A. K. Dalton
Trans. 2012, 41, 1931–1937.
5. Kim, J. H.; Kim, J. W.; Shokouhimehr, M.; Lee, Y. S. J. Org.
Chem. 2005, 70, 6714–6720.
6. Godoy, F.; Segarra, C.; Poyatos, M.; Peris, E. Organometallics
2011, 30, 684–688.
7. Grasa, G. A.; Hillier, A. C.; Nolan, S. P. Org. Lett. 2001, 3, 1077–
1080.
8. Mino, T.; Shirae, Y.; Sakamoto, M.; Fujita, T. J. Org. Chem.
2005, 70, 2191–2194.
9. Lu, J. M.; Ma, H.; Li, S. S.; Ma, D.; Shao, L. X. Tetrahedron
2010, 66, 5185–5189.
10. Manuel, B. M.; Simon, H. O.; Ruben, A. T.; Jesus, V. M.; David,
M. M. Inorg. Chim. Acta 2010, 363, 1222–1229.
11. Kostas, I. D.; Andreadaki, F. J.; Dimitra, K. D.; Prentjasb, C.;
Demertzisb, M. A. Tetrahedron Lett. 2005, 46, 1967–1970.
12. Patil, S. A.; Weng, C. M.; Huang, P. C.; Hong, F. E. Tetrahedron
2009, 65, 2889–2897.
13. Kantam, M. L.; Srinivas, P.; Yadav, J.; Likhar, P. R.; Bhargava, S.
J. Org. Chem. 2009, 74, 4882–4885.
14. Mohanty, S.; Suresh, D.; Balakrishna, M. S.; Mague, J. T.
Tetrahedron 2008, 64, 240–247.
15. Oberli, M. A.; Buchwald, S. L. Org. Lett. 2012, 14, 4606–4609.
16. Cho, S. D.; Kim, H. K.; Yim, H. S.; Kim, M. R.; Lee, J. K.; Kimd,
J. J.; Yoon, Y. J. Tetrahedron 2007, 63, 1345–1352.
17. Pomeisl, K.; Holy, A.; Pohl, R.; Horska, K. Tetrahedron 2009, 65,
8486–8492.
18. Moore, L. R.; Shaughnessy, K. H. Org. Lett. 2004, 6, 225–228.
19. Kantam, M. L.; Parsharamulu, T.; Likhar, P. R.; Srinivas, P. J.
Organomet. Chem. 2013, 729, 9–13.
20. (a) Modak, A.; Mondal, J.; Sasidharan, M.; Bhaumik A. Green
Chem 2011, 13, 1317–1331; (b) Polshettiwar, V.; Decottignies,
A.; Len, C.; Fihri, A. ChemSusChem 2010, 3, 502–522; (c) Sin,
E.; Yi, S. S.; Lee, Y. S. J. Mol. Catal. A-Chem. 2010, 315, 99–
104; (d) Wan, J. P.; Wang, C.; Zhou, R.; Liu, Y. RSC Adv. 2012,
2, 8789–8792; (e) Liu, C.; Ni, Q.; Bao, F.; Qiu, J. Green Chem
2011, 13, 1260–1266; (f) Liu, C.; Zhang, Y. X.; Liu, N.; Qiu, J. S.
Green Chem 2012, 14, 2999–3003; (g) Karimi, B.; Mansouri, F.;
Vali, H. Green Chem. 2014, 16, 2587–2596; (h) Jafar Hoseini, S.;
Heidari, V.; Nasrabadi, H. J. Mol. Catal. A: Chem. 2015, 3, 90–
95.
21. (a) Bose, P.; Ghosh, P. Chem. Commun. 2010, 46, 2962–2964; (b)
Mal, R.; Mittal, N.; Emge, T. J.; Seidel, D. Chem. Commun. 2009,
7309–7311; (c) Mochizuki, K.; Takahashi, J.; Ishima, Y.; Shindo,
T. Inorg. Chim. Acta 2013, 400, 151–158; (d) Li, R.; Zhao, Y.; Li,
S.; Yang, P.; Huang, X.; Yang, X. J.; Wu, B. Inorg. Chem. 2013,
52, 5851–5860; (e) Ibrahim, O. B. Adv. Appl. Sci. Res. 2012, 3,
3522–3539.