Structure and Catalytic Mechanism of Kce
3. Eddy, S. R. (1996) Curr. Opin. Struct. Biol. 6, 361–365
4. Osterman, A., and Overbeek, R. (2003) Curr. Opin. Chem. Biol. 7,
238–251
Glu-143 is involved in the network of interactions that hold the
S3), in which it adopts a different rotamer upon substrate bind-
ing and structuring of the 3-␣3 loop (see above). Substitutions
of this residue are thus likely to alter the network that holds the
key water molecule, decreasing the overall catalytic efficiency.
Concluding Remarks—The wide functional diversity of TIM
barrel domains, which at present account for almost 9% of the
whole PDB, is well known. The vast majority of these proteins
are enzymes, spread ubiquitously in all kingdoms of life and
most often involved in metabolic pathways (32). However,
despite the already known large chemical variety of reactions
catalyzed by this fold, new types of reactions or novel catalytic
mechanisms performed by TIM barrel enzymes could still have
escaped identification. Indeed, we provide here strong evidence
pointing to Kce as the first representative of a new subclass of
TIM barrel Zn2ϩ-dependent condensing enzymes. Similarly to
canonical class II aldolases, which share with Kce both the pres-
ence of the zinc cation and the same (/␣)8 barrel fold, Zn2ϩ is
crucial to chelate both the substrate and the nascent acetoace-
tate product, as well as to stabilize their enolic forms, but the
overall reaction course is mechanistically closer to a carbon-
carbon Claisen condensation. Our model is fully consistent
with earlier literature reports about the origin of carbon atoms
in the products and the fact that no covalent acyl-enzyme inter-
mediate could ever be observed (8–10). Further research would
reveal whether or not Kce represents a member of a whole new
5. Zhang, C., and Kim, S. H. (2003) Curr. Opin. Chem. Biol. 7, 28–32
6. Jaroszewski, L., Li, Z., Krishna, S. S., Bakolitsa, C., Wooley, J., Deacon,
A. M., Wilson, I. A., and Godzik, A. (2009) PLoS Biol. 7, e1000205
7. Kreimeyer, A., Perret, A., Lechaplais, C., Vallenet, D., Me´digue, C.,
Salanoubat, M., and Weissenbach, J. (2007) J. Biol. Chem. 282, 7191–7197
8. Barker, H. A., Kahn, J. M., and Chew, S. (1980) J. Bacteriol. 143, 1165–1170
9. Barker, H. A., Kahn, J. M., and Hedrick, L. (1982) J. Bacteriol. 152, 201–207
10. Yorifuji, T., Jeng, I. M., and Barker, H. A. (1977) J. Biol. Chem. 252, 20–31
11. Kabsch, W. (2010) Acta Crystallogr. D Biol. Crystallogr. 66, 125–132
12. Collaborative Computational Project, Number 4 (1994) Acta Crystallogr.
D Biol. Crystallogr. 50, 760–763
13. Sheldrick, G. M. (2008) Acta Crystallogr. A 64, 112–122
14. Terwilliger, T. C., and Berendzen, J. (1999) Acta Crystallogr. D Biol. Crys-
tallogr. 55, 849–861
15. Emsley, P., Lohkamp, B., Scott, W. G., and Cowtan, K. (2010) Acta Crys-
tallogr. D Biol. Crystallogr. 66, 486–501
16. Murshudov, G. N., Vagin, A. A., and Dodson, E. J. (1997) Acta Crystallogr.
D Biol. Crystallogr. 53, 240–255
17. Vagin, A., and Teplyakov, A. (1997) J. Appl. Crystallogr. 30, 1022–1025
18. Blanc, E., Roversi, P., Vonrhein, C., Flensburg, C., Lea, S. M., and Bricogne,
G. (2004) Acta Crystallogr. D Biol. Crystallogr. 60, 2210–2221
19. Chen, V. B., Arendall, W. B., 3rd, Headd, J. J., Keedy, D. A., Immormino,
R. M., Kapral, G. J., Murray, L. W., Richardson, J. S., and Richardson, D. C.
(2010) Acta Crystallogr. D Biol. Crystallogr. 66, 12–21
20. Dolinsky, T. J., Nielsen, J. E., McCammon, J. A., and Baker, N. A. (2004)
Nucleic Acids Res. 32, W665–667
21. Davis, F. A., Zhang, Y., Andemichael, Y., Fang, T., Fanelli, D. L., and Zhang,
H. (1999) J. Org. Chem. 64, 1403–1406
22. Trott, O., and Olson, A. J. (2010) J. Comput. Chem. 31, 455–461
23. Hinsen, K. (2000) J. Comput. Chem. 21, 79–85
class of enzymes catalyzing carbon-carbon condensations 24. Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt,
D. M., Meng, E. C., and Ferrin, T. E. (2004) J. Comput. Chem. 25,
1605–1612
involving CoA esters and small organic -keto acids.
25. Heath, R. J., and Rock, C. O. (2002) Nat. Prod. Rep. 19, 581–596
26. Hermann, J. C., Ghanem, E., Li, Y., Raushel, F. M., Irwin, J. J., and Shoichet,
B. K. (2006) J. Am. Chem. Soc. 128, 15882–15891
27. Hermann, J. C., Marti-Arbona, R., Fedorov, A. A., Fedorov, E., Almo, S. C.,
Shoichet, B. K., and Raushel, F. M. (2007) Nature 448, 775–779
28. Guille´n Schlippe, Y. V., and Hedstrom, L. (2005) Arch. Biochem. Biophys.
433, 266–278
Acknowledgments—We are grateful to C. Pelle´ and C. Lechaplais
(CEA Genoscope) for excellent technical assistance and to A. Haouz
and P. Weber (PF6, Institut Pasteur) for performing robot-driven crys-
tallization trials. We also thank ESRF and Synchrotron SOLEIL for
provision of synchrotron radiation facilities, and their respective staffs
for assistance in using the beamlines.
29. Burgi, H. B., Dunitz, J. D., Lehn, J. M., and Wipff, G. (1974) Tetrahedron
30, 1563–1572
REFERENCES
30. Anstrom, D. M., Kallio, K., and Remington, S. J. (2003) Protein Sci. 12,
1822–1832
1. Bateman, A., Coggill, P., and Finn, R. D. (2010) Acta Crystallogr. F Struct.
Biol. Cryst. Commun. 66, 1148–1152
31. Koon, N., Squire, C. J., and Baker, E. N. (2004) Proc. Natl. Acad. Sci. U.S.A.
101, 8295–8300
2. Dayhoff, M. O., Schwartz, R., and Orcutt, B. C. (1978) in Atlas of Protein
Sequence and Structure (Dayhoff, M. O., ed) pp. 345–352, National Bio- 32. Nagano, N., Orengo, C. A., and Thornton, J. M. (2002) J. Mol. Biol. 321,
medical Research Foundation, Washington, D.C.
741–765
AUGUST 5, 2011•VOLUME 286•NUMBER 31
JOURNAL OF BIOLOGICAL CHEMISTRY 27405