Proquinoidal Bis[(Porphinato)zinc(II)] Compounds
A R T I C L E S
(porphinato)metal compounds can be modulated extensively by
Scheme 1
variation of the macrocycle peripheral meso- or â-substituents,
as well as by selection of the central metal ion; further, a variety
of modes of porphyrinoid-porphyrinoid connectivity provides
sufficiently strong interchromophore electronic interactions to
facilitate extensive electronic delocalization.1
7-42
Of these
families of multipigment ensembles that feature substantial
ground- and excited-state interchromophore electronic interac-
tions, those that feature direct ethyne-, butadiyne-, and oligoyne-
based macrocycle-to-macrocycle connectivity have evinced a
degree of cumulenic (quinoidal) character. Porphyrin-to-por-
phyrin bridging motifs involving ethynes and spacers that induce
a quinoidal structural perturbation with appropriately positioned
frontier orbital energy levels, should enhance ground- and
excited-state π-conjugation, and effect further reduction in Eop
and Ep in the corresponding oligomeric and polymeric structures.
Polymer band-gap reduction through augmentation of π-back-
bone quinoidal character has been explored both experimen-
wide range of particularly impressive electrooptic pro-
perties.1
7-24,28-31,36,37
As increasing conjugation length dimin-
ishes significantly optical (Eop) and potentiometric (Ep) band
gaps within these families of structures, multiporphyrin com-
pounds that exploit cylindrically π-symmetric linkers define a
point of reference from which to engineer further electronic
modulation of conjugated organic materials.
An established means to further reduce the Eop and Ep gaps
of π-conjugated materials involves introducing quinoid-like
45,46
47,48
tally
and theoretically.
In this regard, benzo[1,2-c:4,5-
c′]bis([1,2,5]thiadiazole) (BBTD), exemplifies an established
conjugated unit with suitable electronic structure to induce
49-52
substantial quinoidal character in a conjugated backbone.
1
0,13,14
character into the conjugation main-chain.
Solution-phase
Because BBTD features large atomic orbital coefficients at its
bridging 4- and 8-positions in both the HOMO and LUMO,
excellent interchromophore electronic delocalization would be
17,18,21,43
spectroscopic experiments
and X-ray crystallographic
44
data obtained for bis[(5,5′,-10,20-di(aryl)porphinato)zinc(II)]-
ethyne compounds demonstrate that the bridging ethyne pos-
sesses conventional triple bond character in the ground state;
anticipated between [(5,-10,20-di(aryl)porphinato)zinc(II)]ethy-
20,21,43,53,54
nyl (PZnE) units appended at these positions;
struc-
electronic absorption,1
7,18,20,21
electroabsorption, and pump-
20
tural relaxation toward the stable form of BBTD’s two 1,2,5-
thiadiazole rings would therefore drive an increasing contribution
of the cumulenic resonance form to the ground- (S0) and low-
lying electronically excited singlet-state (S1) wave functions
probe spectroscopic methods1 are consistent with an excited
9,22
state electronic structure for this species that features a modest
(
17) Lin, V. S.-Y.; DiMagno, S. G.; Therien, M. J. Science 1994, 264, 1105-
5
0
1
111.
(Scheme 1).
(
18) Lin, V. S.-Y.; Therien, M. J. Chem. Eur. J. 1995, 1, 645-651.
19) Kumble, R.; Palese, S.; Lin, V. S.-Y.; Therien, M. J.; Hochstrasser, R. M.
J. Am. Chem. Soc. 1998, 120, 11489-11498.
We report the synthesis, optical, electrochemical, and ground-
and excited-state electronic structural properties of conjugated
(
(
20) Shediac, R.; Gray, M. H. B.; Uyeda, H. T.; Johnson, R. C.; Hupp, J. T.;
Angiolillo, P. J.; Therien, M. J. J. Am. Chem. Soc. 2000, 122, 7017-7033.
21) Susumu, K.; Therien, M. J. J. Am. Chem. Soc. 2002, 124, 8550-8552.
22) Rubtsov, I. V.; Susumu, K.; Rubtsov, G. I.; Therien, M. J. J. Am. Chem.
Soc. 2003, 125, 2687-2696.
(porphinato)zinc(II)-spacer-(porphinato)zinc(II) (PZn-Sp-PZn)
(
(
complexes that feature conjugated Sp structures having varying
degrees of proquinoidal character (Figure 1). These Sp moieties
5
5-58
(
23) Ostrowski, J. C.; Susumu, K.; Robinson, M. R.; Therien, M. J.; Bazan, G.
C. AdV. Mater. 2003, 15, 1296-1300.
24) Angiolillo, P. J.; Uyeda, H. T.; Duncan, T. V.; Therien, M. J. J. Phys.
Chem. B 2004, 108, 11893-11903.
{4,7-diethynylbenzo[c][1,2,5]thiadiazole (E-BTD-E),
diethynylpentacene (E-PC-E),
6,13-
5
9,60
4,9-diethynyl-6,7-dimethyl-
(
[1,2,5]thiadiazolo[3,4-g]quinoxaline (E-TDQ-E), and 4,8-
diethynylbenzo[1,2-c:4,5-c′]bis([1,2,5]thiadiazole) (E-BBTD-
E)} progressively increase the extent of the cumulenic resonance
contribution to the PZn-Sp-PZn S0- and S1-state structures, and
magnify the electronic communication between the component
(
(
(
(
(
25) Fletcher, J. T.; Therien, M. J. J. Am. Chem. Soc. 2000, 122, 12393-12394.
26) Fletcher, J. T.; Therien, M. J. Inorg. Chem. 2002, 41, 331-341.
27) Fletcher, J. T.; Therien, M. J. J. Am. Chem. Soc. 2002, 124, 4298-4311.
28) Anderson, H. L. Inorg. Chem. 1994, 33, 972-981.
29) Taylor, P. N.; Wylie, A. P.; Huuskonen, J.; Anderson, H. L. Angew. Chem.
Int. Ed. 1998, 37, 986-989.
(
(
(
(
(
30) Taylor, P. N.; Huuskonen, J.; Rumbles, G.; Aplin, R. T.; Williams, E.;
Anderson, H. L. Chem. Commun. 1998, 909-910.
31) Arnold, D. P.; Heath, G. A.; James, D. A. J. Porphyrins Phthalocyanines
(45) Kobayashi, M.; Colaneri, N.; Boysel, M.; Wudl, F.; Heeger, A. J. J. Chem.
Phys. 1985, 82, 5717-5723.
1
999, 3, 5-31.
32) Jiang, B.; Yang, S.-W.; Barbini, D. C.; Jones Jr., W. E. Chem. Commun.
998, 213-214.
(46) Jenekhe, S. A. Nature 1986, 322, 345-347.
1
(47) Br e´ das, J. L.; Heeger, A. J.; Wudl, F. J. Chem. Phys. 1986, 85, 4673-
4678.
33) Yamamoto, T.; Fukushima, N.; Nakajima, H.; Maruyama, T.; Yamaguchi,
I. Macromolecules 2000, 33, 5988-5994.
(48) Lee, Y.-S.; Kertesz, M. J. Chem. Phys. 1988, 88, 2609-2617.
(49) Ono, K.; Tanaka, S.; Yamashita, Y. Angew. Chem., Int. Ed. Engl. 1994,
33, 1977-1979.
34) Odobel, F.; Suresh, S.; Blart, E.; Nicolas, Y.; Quintard, J.-P.; Janvier, P.;
Le Questel, J.-Y.; Illien, B.; Rondeau, D.; Richomme, P.; H a¨ upl, T.; Wallin,
S.; Hammarstr o¨ m, L. Chem. Eur. J. 2002, 8, 3027-0345.
(50) Karikomi, M.; Kitamura, C.; Tanaka, S.; Yamashita, Y. J. Am. Chem. Soc.
1995, 117, 6791-6792.
(
(
(
(
(
(
35) Li, G.; Wang, T.; Schulz, A.; Bhosale, S.; Lauer, M.; Espindola, P.; Heinze,
J.; Fuhrhop, J.-H. Chem. Commun. 2004, 552-553.
(51) Kitamura, C.; Tanaka, S.; Yamashita, Y. Chem. Mater. 1996, 8, 570-578.
(52) Yamashita, Y.; Ono, K.; Tomura, M.; Tanaka, S. Tetrahedron 1997, 53,
10169-10178.
36) Beljonne, D.; O’Keefe, G. E.; Hamer, P. J.; Friend, R. H.; Anderson, H.
L.; Br e´ das, J. L. J. Chem. Phys. 1997, 106, 9439-9460.
37) Susumu, K.; Maruyama, H.; Kobayashi, H.; Tanaka, K. J. Mater. Chem.
(53) LeCours, S. M.; Guan, H.-W.; DiMagno, S. G.; Wang, C. H.; Therien, M.
J. J. Am. Chem. Soc. 1996, 118, 1497-1503.
2
001, 11, 2262-2270.
38) Crossley, M. J.; Govenlock, L. J.; Prashar, J., K. J. Chem. Soc., Chem.
Commun. 1995, 2379-2380.
(54) Priyadarshy, S.; Therien, M. J.; Beratan, D. N. J. Am. Chem. Soc. 1996,
118, 1504-1510.
39) Jaquinod, L.; Siri, O.; Khoury, R. G.; Smith, K. M. Chem. Commun. 1998,
(55) Bangcuyo, C. G.; Evans, U.; Myrick, M. L.; Bunz, U. H. F. Macromolecules
2001, 34, 7592-7594.
1
261-1262.
40) Vicente, M. G. H.; Cancilla, M. T.; Lebrilla, C. B.; Smith, K. M. Chem.
Commun. 1998, 2355-2356.
(56) Akhtaruzzaman, M.; Tomura, M.; Zaman, M. B.; Nishida, J.-i.; Yamashita,
Y. J. Org. Chem. 2002, 67, 7813-7818.
(
(
41) Tsuda, A.; Osuka, A. Science 2001, 293, 79-82.
(57) Yamamoto, T.; Morikita, T. Macromolecules 2003, 36, 4262-4267.
(58) Kato, S.-i.; Matsumoto, T.; Ishi-i, T.; Thiemann, T.; Shigeiwa, M.;
Gorohmaru, H.; Maeda, S.; Yamashita, Y.; Mataka, S. Chem. Commun.
2004, 2342-2343.
42) Cho, H. S.; Jeong, D. H.; Cho, S.; Kim, D.; Matsuzaki, Y.; Tanaka, K.;
Tsuda, A.; Osuka, A. J. Am. Chem. Soc. 2002, 124, 14642-14654.
43) LeCours, S. M.; DiMagno, S. G.; Therien, M. J. J. Am. Chem. Soc. 1996,
(
(
1
18, 11854-11864.
(59) Anthony, J. E.; Brooks, J. S.; Eaton, D. L.; Parkin, S. R. J. Am. Chem.
Soc. 2001, 123, 9482-9483.
44) Uyeda, H. T. Doctoral Dissertation, University of Pennsylvania, Philadel-
phia, 2002.
(60) Anthony, J. E.; Eaton, D. L.; Parkin, S. R. Org. Lett. 2002, 4, 15-18.
J. AM. CHEM. SOC.
9
VOL. 127, NO. 14, 2005 5187