Job/Unit: I50184
/KAP1
Date: 08-04-15 18:09:16
Pages: 8
www.eurjic.org
FULL PAPER
perature. After the mixture had been stirred overnight, all volatiles
were removed under vacuum, and then recrystallization from tolu-
ene at –15 °C gave product 1 as colorless crystals (96%, 0.52 g). H
had been cooled and vented, a small sample of the mixture was
taken for analysis by H NMR analysis.
1
1
Supporting Information (see footnote on the first page of this arti-
NMR (400.13 MHz, C
.99 (s, H, -NMe- and -OCMe
NCH CH N-), 1.73 (s, 2 H, -NCH CH
2 H, -OCMe CH
N-), –0.41 (s, 3 H, AlMe) ppm. 1 C NMR
): δ = 70.5 (-OCMe CH N-), 67.7 (-OC-
N-), 55.8 (-NCH CH N-), 45.4 (-NMe-), 33.8, 32.5
-), –10.1 (AlMe) ppm. 7Al NMR (104.26 MHz,
CMe
): δ = 95.1 [Δν1/2 = 2500 Hz] ppm. C13 29AlN (272.3631):
calcd. C 57.33, H 10.73, N 10.29; found C 57.12, H 10.98, N 9.87.
6
D
6
): δ = 2.21 (br. s, 2 H, -OCMe
2
CH
2
N-),
1
13
27
cle): H, C, and Al NMR spectra of all of the products.
1
8
2
CH N-), 1.92 (s,
2
2
H,
-
1
2
2
2
2
N-), 1.34 (d, J = 11.8 Hz,
3
2
2
Acknowledgments
(
100.63 MHz, C
Me CH
-NCH
6
D
6
2
2
2
2
2
2
2
This work was financially supported by the Korean Ministry of
Education (MOE) and the National Research Foundation of Korea
(
2
2
C
6
D
6
H
2 2
O
(
NRF) through the Creative Human Resource Training Project for
Regional Innovation (grant number 2014H1C1A1066874).
MeAl(OCMe CH NMe (2): In a manner analogous to that used
2
2
2 2
)
in the procedure for 1, the desired product 2 was prepared from a
toluene solution of AlMe (1.25 mL of a 2.0 m solution in toluene,
.5 mmol) and L2 (0.59 g, 5.0 mmol) in a yield of 98% (0.67 g). H
NMR (400.13 MHz, C ): δ = 2.36 (s, 6 H, –NMe ), 2.28 (d, J =
CH NMe ), 2.18 (d, J = 11.9 Hz, 2 H,
), 2.13 (s, 6 H, –NMe ), 1.28 (d, J = 4.2 Hz,
NMe
), –0.64 (s, 3 H, AlMe) ppm. 13C NMR
): 70.8 (–OCMe CH NMe ), 66.8
), 47.9, 47.5 (–NMe ), 34.4, 33.6 (–OCMe
), –10.9 (AlMe) ppm. Al NMR (104.26 MHz, C
δ = 88.6 [Δν1/2 = 2900 Hz] ppm. C13 31AlN (274.3790): calcd.
C 56.91, H 11.39, N 10.21; found C 57.02, H 11.31, N 10.15.
[
[
1] J. Bayardon, J. Holz, B. Schäffner, V. Andrushko, S. Verekin,
3
A. Preetz, A. Börner, Angew. Chem. Int. Ed. 2007, 46, 5971–
1
2
5974; Angew. Chem. 2007, 119, 6075.
6
D
6
2
2] M. Arakawa, S. Tobishima, T. Hirai, J. Yamaki, J. Electrochem.
Soc. 1986, 133, 1527–1528.
1
–
1
2.6 Hz, 2 H, -OCMe
OCMe CH NMe
2 H, -OCMe CH
2
2
2
2
2
2
2
2
[3] T. Takata, Y. Furusho, K. Murakawa, T. Endo, H. Matsuoka,
T. Hirasa, J. Matsuo, M. Sisido, J. Am. Chem. Soc. 1998, 120,
4530–4531.
2
2
(
(
100.63 MHz,
–OCMe CH
NMe
C
6
D
6
δ
=
2
2
2
[4] K. B. Sharpless, H. T. Chang, Tetrahedron Lett. 1996, 37, 3219–
2
2
NMe
2
2
2
-
27
3222.
CH
2
2
6 6
D ):
[
[
5] D. C. Webster, Prog. Org. Coat. 2003, 47, 77–86.
6] K. Biggadike, R. M. Angell, C. M. Burgess, R. M. Farrell, A. P.
Hancock, A. J. Harker, W. R. Irving, C. Ioannou, P. A. Proco-
piou, R. E. Shaw, Y. E. Solanke, O. M. P. Singh, M. A.
Snowden, R. J. Stubbs, S. Walton, H. E. Weston, J. Med. Chem.
H
2 2
O
[
Me Al(OCMe CH NMe )] (3): In a manner analogous to that
2
2
2
2 2
used in the procedure for 1, the desired product 3 was prepared
from a toluene solution of AlMe (2.5 mL of a 2.0 m solution in
toluene, 5.0 mmol) and L2 (0.59 g, 5.0 mmol) in a yield of 98%
2
000, 43, 19–21.
7] D. Tian, B. Liu, Q. Gan, H. Li, D. J. Darensbourg, ACS Catal.
012, 2, 2029–2035.
8] a) X.-B. Lu, D. J. Darensbourg, Chem. Soc. Rev. 2012, 41,
462–1484; b) J. Wang, J. Wu, N. Tang, Inorg. Chem. Commun.
2007, 10, 1493–1495.
[9] D. J. Darensbourg, Chem. Rev. 2007, 107, 2388–2410.
), [10] M. Ulusoy, O. Sahin, A. Kilic, Catal. Lett. 2011, 141, 717–725.
[11] K. Nakano, K. Kobayashi, K. Nozaki, J. Am. Chem. Soc. 2011,
33, 10720–10723.
12] I. Shibata, I. Mitani, A. Imakuni, A. Baba, Tetrahedron Lett.
011, 52, 721–723.
3
[
[
2
1
(
–
–
(
(
–
[
1.69 g). H NMR (400.13 MHz, C
6
D
6
): δ = 2.00 (s, 4 H,
), 1.98 (s, 12 H, –NMe ), 1.32 (s, 12 H,
), –0.47 (s, 3 H, AlMe) ppm.
): 69.9 (–OCMe CH NMe
), 46.9 (–NMe ), 31.9 (–OCMe CH
5.60 (AlMe) ppm. 7Al NMR (104.26 MHz, C
): δ = 111.5
Δν1/2 = 2400 Hz] ppm. C16 40Al (346.4641): calcd. C 55.47,
OCMe
OCMe
2
CH
2
NMe
NMe
2
2
1
13
2
CH
2
2
C NMR
), 69.6
NMe
100.63 MHz,
–OCMe CH
C
NMe
6
D
6
δ
=
2
2
2
2
2
2
2
2
2
2
2
6 6
D
1
H
2 2 2
N O
[
[
[
[
[
H 11.64, N 8.09; found C 55.51, H 11.59, N 8.15.
2
13] A. Buchard, M. R. Kember, K. G. Sandeman, C. K. Williams,
Chem. Commun. 2011, 47, 212–214.
14] D. J. Darensbourg, E. B. Frantz, Inorg. Chem. 2007, 46, 5967–
X-ray Structural Determination for 1–3: Crystallographic measure-
ments of complexes 1–3 were performed at 296(2) K with a Bruker
α
APEX II diffractometer and Mo-K (λ = 0.71073 Å) radiation.
5978.
3
Specimens of suitable quality and size (0.1ϫ0.1ϫ0.1 mm ) were
selected, mounted, and centered in the X-ray beam with use of a
video camera. The structure was solved by direct methods and re-
fined by full-matrix least-squares methods by use of the
15] F. Li, C. Xia, L. Xu, W. Sun, G. Chen, Chem. Commun. 2003,
2042–2043.
16] B. M. Trost, S. R. Angle, J. Am. Chem. Soc. 1985, 107, 6123–
6124.
[
36]
SHELXTL
eters for all non-hydrogen atoms. Final refinement based on the
reflections [I Ͼ 2·σ(I)] converged at R = 0.0351, wR = 0.0776,
and GOF = 1.096 for 1, at R = 0.0468, wR = 0.1240, and GOF
1.078 for 2, and at R = 0.0434, wR = 0.1063, and GOF = 1.044
for 3.
program package with anisotropic thermal param-
[17] J.-L. Jiang, F. Gao, R. Hua, X. Qiu, J. Org. Chem. 2005, 70,
381–383.
[
[
[
[
18] Z. Bu, Z. Wang, L. Yang, S. Cao, Appl. Organomet. Chem.
1
2
2010, 24, 813–816.
1
2
19] H. Jing, S. K. Edulji, J. M. Gibbs, C. L. Stern, H. Zhou, S. T.
Nguyen, Inorg. Chem. 2004, 43, 4315–4327.
20] M. J. Go, K. M. Lee, C. H. Oh, Y. Y. Kang, S. H. Kim, H. R.
Park, Y. Kim, J. Lee, Organometallics 2013, 32, 4452–4455.
21] H. S. Kim, J. J. Kim, B. G. Lee, B. G. Jung, H. G. Jang, S. O.
Kang, Angew. Chem. Int. Ed. 2000, 39, 4096–4098; Angew.
Chem. 2000, 112, 4262.
=
1
2
CCDC-911740 (for 1), -1048355 (for 2), and -1048356 (for 3) con-
tain the supplementary crystallographic data for this paper. These
data can be obtained free of charge from The Cambridge Crystallo-
graphic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
[
[
[
22] S. H. Kim, D. Ahn, Y. Y. Kang, M. Kim, K.-S. Lee, J. Lee,
M. H. Park, Y. Kim, Eur. J. Inorg. Chem. 2014, 5107–5112.
23] C.-Y. Li, D.-C. Liu, B.-T. Ko, Dalton Trans. 2013, 42, 11488–
Cycloaddition between CO
2
and Epoxides: Cycloaddition between
CO and epoxides (10 mmol) was performed in a 15 mL stainless-
2
11496.
steel autoclave equipped with a stirring bar, epoxide, aluminum cat-
alyst (10 μmol), and cocatalyst (10 μmol) in a glove box. The auto-
clave was sealed prior to removal from the glove box. The autoclave
24] J. A. Castro-Osma, C. Alonso-Moreno, A. Lara-Sanzhez, J.
Martinez, M. North, A. Otero, Catal. Sci. Technol. 2014, 4,
1674–1684.
was initially operated at a pressure of 10 bar CO
2
and then heated
[25] S. A. Lermontov, T. N. Velikokhat’ko, V. O. Zavel’skii, Russ. J.
Gen. Chem. 2002, 72, 1492–1493.
to the desired temperature for the desired time. After the reactor
Eur. J. Inorg. Chem. 0000, 0–0
6
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim