RSC Advances
Paper
one O atom of THF (for 3), and two N atoms of NEt2 (for 4); the
dimers exhibited distorted octahedral, distorted trigonal
bipyramidal, distorted octahedral, and distorted tetrahedral
geometries around the Mn centers, respectively. TGA of 2 and 3
showed three-step weight losses and the residues were consid-
ered to be MnO and Mn3O4, respectively. By TGA, 4 was deter-
mined to be thermally unstable because of the signicantly
higher residue values than the predicted values of known
manganese nitrides. The TGA plot of 5 exhibited like single-step
weight loss and the residual values were lower than those ex-
pected of manganese nitrides. Compound 5 appeared as
a useful precursor for Mn-containing thin lms because it was
liquid and it exhibited low evaporation temperature and suit-
able thermal stability. We plan to investigate ALD to deposit
Mn-containing thin lms using 5 as a precursor.
Z. Hussain and R. W. Schoenlein, Phys. Rev. Lett., 2011,
106, 186404.
4 (a) L. W. Guo, H. J. Ko, H. Makino, Y. F. Chen, K. Inaba and
T. Yao, J. Cryst. Growth, 1999, 205, 531–536; (b) L. W. Guo,
D. L. Peng, H. Makino, K. Inaba, H. J. Ko, K. Sumiyama
and T. Yao, J. Magn. Magn. Mater., 2000, 213, 321; (c)
S. Fujino, M. Murakami, S.-H. Lim, L. G. Salamanca-Riba,
M. Wuttig and I. Takeuchi, J. Appl. Phys., 2007, 101,
013903; (d) F. Yu, Y. Liu, M. Yang, S. Wu, W. Zhou and
S. Li, Thin Solid Films, 2013, 531, 228–232; (e) H. Wang,
´
A. Pomar, S. Martın-Rio, C. Frontera, N. Mestres and
´
B. Martınez, J. Mater. Chem. C, 2019, 7, 12633–12640; (f)
X. Wang, C. Jin, P. Wang, X. Pang, W. Zheng, D. Zheng,
Z. Li, R. Zheng and H. Bai, Appl. Phys. Lett., 2019, 115,
182405.
5 (a) M. Huang, F. Li, F. Dong, Y. X. Zhang and L. L. Zhang, J.
Mater. Chem. A, 2015, 3, 21380–21423; (b) D. P. M. D. Shaik,
P. Rosaiah and O. M. Hussain, J. Electroanal. Chem., 2019,
851, 113409; (c) G. Duraia, P. Kuppusami, T. Maiyalagan,
M. Ahila and P. Vinoth kumar, Ceram. Int., 2019, 45,
17120–17127; (d) A. M. Teli, S. A. Bekanalkar, D. S. Patil,
S. A. Pawar, T. D. Dongale, J. C. Shin, H. J. Kim and
P. S. Patil, J. Electroanal. Chem., 2020, 856, 113483.
6 (a) C.-H. Kuo, I. M. Mosa, A. S. Poyraz, S. Biswas, A. M. El-
Sawy, W. Song, Z. Luo, S.-Y. Chen, J. F. Rusling, J. He and
S. L. Suib, ACS Catal., 2015, 5, 1693–1699; (b) L. Lu,
H. Tian, J. He and Q. Yang, J. Phys. Chem. C, 2016, 120,
Conflicts of interest
There are no conicts to declare.
Acknowledgements
This research was supported by a grant from the Development
of Organometallics and Device Fabrication for IT ET Conver-
gence Project through the Korea Research Institute of Chemical
Technology (KRICT) of Republic of Korea (SI1703-02) and the
Development of Smart Chemical Materials for IoT Devices
Project through the Korea Research Institute of Chemical
Technology (KRICT) of Republic of Korea (SS2021-20).
´
23660–23668; (c) F. Mattelaer, T. Bosserez, J. Ronge,
J. A. Martens, J. Dendooven and C. Detavernier, RSC Adv.,
2016, 6, 98337–98343; (d) S. Zhang, B. Zhang, B. Liu and
S. Sun, RSC Adv., 2017, 7, 26226–26242; (e) C. Walter,
P. W. Menezes, S. Orthmann, J. Schuch, P. Connor,
B. Kaiser, M. Lerch and M. Driess, Angew. Chem., Int. Ed.,
2018, 57, 698–702.
7 (a) Y. Au, Y. Lin, H. Kim, E. Beh, Y. Liu and R. G. Gordon, J.
Electrochem. Soc., 2010, 157, D341–D345; (b) Y. Au, Y. Lin and
R. G. Gordon, J. Electrochem. Soc., 2011, 158, D248–D253; (c)
V. Selvaraju, A. Brady-Boyd, R. O'Connor, G. Hughes and
J. Bogan, Surf. Interfaces, 2018, 13, 133–138 and references
therein.
References
1 (a) J. Proell, R. Kohler, A. Mangang, S. Ulrich, C. Ziebert and
W. Peging, J. Laser Micro/Nanoeng., 2012, 7, 97–104; (b)
Y.-H. Liu, S.-S. Liao and B. H. Liu, Nanoscale, 2016, 8,
19978–19983; (c) N. Zhang, F. Cheng, J. Liu, L. Wang,
X. Long, X. Liu, F. Li and J. Chen, Nat. Commun., 2017, 8,
405; (d) V. Sridhar and H. Park, J. Alloys Compd., 2019, 808,
151748; (e) N. Labyedh, F. Mattelaer, C. Detavernier and
P. M. Vereecken, J. Mater. Chem. A, 2019, 7, 18996–19007.
`
2 (a) R. G. Toro, D. M. R. Fiorito, M. E. Fragala, A. Barbucci,
8 (a) W. D. Sides and Q. Huang, Electrochim. Acta, 2018, 266,
185–192; (b) S. P. Zankowski, L. van Hoecke, F. Mattelaer,
M. de Raedt, O. Richard, C. Detavernier and
P. M. Vereecken, Chem. Mater., 2019, 31, 4805–4816; (c)
C. Rogier, G. Pognon, P. Bondavalli, C. Galindo,
G. T. M. Nguyen, C. Vancaeyzeele and P.-H. Aubert, Surf.
Coat. Technol., 2020, 384, 125310.
M. P. Carpanese and G. Malandrino, Mater. Chem. Phys.,
2010, 124, 1015–1021; (b) J. N. Davis, K. F. Ludwig,
K. E. Smith, J. C. Woicik, S. Gopalan, U. B. Pal and
S. N. Basu, J. Electrochem. Soc., 2017, 164, F3091–F3096; (c)
R. Saˇzinas, K. B. Andersen, S. B. Simonsen, P. Holtappels
and K. K. Hansen, J. Electrochem. Soc., 2019, 166, F79–F88;
´
(d) Y. Zhang, H. Zhao, Z. Du, K. Swierczek and Y. Li, Chem.
9 (a) M. Aoyama, K. Takenaka and H. Ikuta, J. Alloys Compd.,
2013, 577S, S314–S317; (b) K. Kabara and M. Tsunoda, J.
Appl. Phys., 2015, 117, 17B512.
10 (a) Y. Yasutomi, K. Ito, T. Sanai, K. Toko and T. Suemasu, J.
Appl. Phys., 2014, 115, 17A935; (b) M. Meng, S. X. Wu,
L. Z. Ren, W. Q. Zhou, Y. J. Wang, G. L. Wang and
S. W. Li, Appl. Phys. Lett., 2015, 106, 032407; (c) T. Gushi,
Mater., 2019, 31, 3784–3793; (e) A. Eksioglu, L. C. Arslan,
M. Sezen, C. Ow-Yang and A. Buyukaksoy, ACS Appl. Mater.
Interfaces, 2019, 11, 47904–47916.
3 (a) T. Nakamura, R. Tai and K. Tachibana, J. Appl. Phys.,
2006, 99, 08Q302; (b) T. Nakamura, K. Homma, R. Tai,
A. Nishio and K. Tachibana, IEEE Trans. Magn., 2007, 43,
3070; (c) S. Y. Zhou, Y. Zhu, M. C. Langner, Y.-D. Chuang,
P. Yu, W. L. Yang, A. G. Cruz Gonzalez, N. Tahir, M. Rini,
Y.-H. Chu, R. Ramesh, D.-H. Lee, Y. Tomioka, Y. Tokura,
´
M. J. Klug, J. P. Garcia, S. Ghosh, J.-P. Attane, H. Okuno,
O. Fruchart, J. Vogel, T. Suemasu, S. Pizzini and L. Vila,
Nano Lett., 2019, 19, 8716–8723.
29666 | RSC Adv., 2020, 10, 29659–29667
This journal is © The Royal Society of Chemistry 2020