K. Tanaka, S. Hachiken / Tetrahedron Letters 49 (2008) 2533–2536
2535
To explore the generality of this method, we examined
wide variety of aromatic aldehydes listed in Table 1 under
the optimal conditions in the presence of Cu(OAc)2 com-
plex with chiral ligands (1–4). In all the cases, the reactions
proceeded smoothly to give the desired products. The pres-
ence of either electron-withdrawing (entries 5–16) or elec-
tron-donating (entries 17–20) substitution at the para- or
ortho-positions of the aromatic ring of the aldehydes was
well tolerated and furnished the corresponding nitroaldol
products in moderate to good yields with high enantiose-
lectivities (Table 2).
21, 25, and 29). For example, the reaction of 1-octanal pro-
vided the corresponding nitroaldol (8b) in 74% yield with
93% ee. Pivaldehyde was also applicable in the Henry reac-
tion, providing the corresponding nitroaldol (8f) with 90%
ee in 88% yield (entry 21).
It is noteworthy that the products were obtained in the
(R)-form in all the reactions examined in Tables 1–3, show-
ing the nucleophilic addition of nitromethane at the si-face
of the aldehyde. The mechanistic details of the reaction are
still under investigation.
In conclusion, the Cu(OAc)2 complex with chiral tri-
anglamine was found to be efficient for the catalytic enan-
tioselective Henry reaction under solvent-free conditions. It
showed broad substrate applicability, good product yield,
and high enantioselectivity under the mild and solvent-free
conditions. Further studies using this catalytic system in
environmentally friendly asymmetric transformation are
underway.
More interestingly, aliphatic (cyclic, linear, and
branched) aldehydes were smoothly converted to nitroald-
ols in good yields with excellent enantioselectivity (83–93%
ee) especially using ligand 1 (Table 3, entries 1, 5, 9, 13, 17,
Table 3
Enantioselective Henry reaction of MeNO2 and aliphatic aldehydes under
solvent-free conditions
.
L
Cu(OAc)2
(3 mol %)
OH
Acknowledgments
NO2
R CHO
+
MeNO2
R
0 °C, 48 h
solvent-free
d: R = n-C5H11
e: R = n-C4H9
f: R = t-C4H9
This work was supported by ‘High-Tech Research Cen-
ter’ Project for Private Universities: matching fund subsidy
from MEXT (Ministry of Education, Culture, Sports, Sci-
ence and Technology), 2005–2009.
(R)-8
7
a: R = Cyclohexyl
b: R = n-C7H15
c: R = n-C6H13
g: R = i-C3H7
h: R = C2H5
i: R = CH3
Entry
R
L
Conv.a (%)
Yielda (%)
eeb (%)
References and notes
1
2
3
4
5
6
7
8
9
Cyclohexyl
Cyclohexyl
Cyclohexyl
Cyclohexyl
n-C7H15
n-C7H15
n-C7H15
n-C7H15
n-C6H13
n-C6H13
n-C6H13
n-C6H13
n-C5H11
n-C5H11
n-C5H11
n-C5H11
n-C4H9
n-C4H9
n-C4H9
n-C4H9
t-C4H9
(+)-1
(+)-2
(+)-3
(+)-4
(+)-1
(+)-2
(+)-3
(+)-4
(+)-1
(+)-2
(+)-3
(+)-4
(+)-1
(+)-2
(+)-3
(+)-4
(+)-1
(+)-2
(+)-3
(+)-4
(+)-1
(+)-2
(+)-3
(+)-4
(+)-1
(+)-2
(+)-3
(+)-4
(+)-1
(+)-2
(+)-3
(+)-4
57
75
60
53
95
97
89
90
97
85
97
89
57
63
25
36
74
22
49
68
60
34
17
35
73
82
32
46
88
48
46
61
88
12
7
92
81
80
71
93
80
89
80
91
83
83
75
88
78
82
70
89
83
83
73
90
93
88
76
83
81
81
63
84
79
78
66
1. (a) Trost, B. M.; Fleming, I. Comprehensive Organic Synthesis;
Pergamon: New York, 1991; (b) Palomo, C.; Oiarbide, M.; Mielgo, A.
Angew. Chem., Int. Ed. 2004, 43, 5442; (c) Palomo, C.; Oiarbide, M.;
Laso, A. Eur. J. Org. Chem. 2007, 2561.
2. (a) Lednicer, D. A.; Mitscher, L. A. The Organic Chemistry of Drug
Synthesis; John Wiley and Sons: New York, 1975; (b) Trost, B. M.;
Yeh, V. S. C.; Ito, H.; Bremeyer, N. Org. Lett. 2002, 4, 2621; (c)
Koskinen, P. M.; Koskinen, M. P. Synthesis 1998, 1075; (d) Sasai, H.;
Itoh, N.; Suzuki, T.; Shibasaki, M. Tetrahedron Lett. 1983, 34, 855;
(e) Boruwa, J.; Gogoi, N.; Saikia, P. P.; Barua, N. C. Tetrahedron:
Asymmetry 2006, 17, 3315.
3. (a) Sasai, H.; Suzuki, T.; Arai, S.; Arai, T.; Shibasaki, M. J. Am.
Chem. Soc. 1992, 114, 4418; (b) Shibasaki, M.; Yoshikawa, N. Chem.
Rev. 2002, 102, 2187; (c) Saa, J. M.; Tur, F.; Gonzalez, J.; Vega, M.
Tetrahedron: Asymmetry 2004, 15, 771.
4. (a) Trost, B. M.; Yeh, V. S. C. Angew. Chem., Int. Ed. 2002, 41, 861;
(b) Palomo, C.; Oiarbide, M.; Laso, A. Angew. Chem., Int. Ed. 2005,
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
a
c
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
´
44, 3881; (c) Palomo, C.; Oiarbide, M.; Halder, A.; Laso, A.; Lopez,
R. Angew. Chem., Int. Ed. 2006, 45, 117.
5. (a) Kogami, Y.; Nakajima, T.; Ashizawa, T.; Kezuka, S.; Ikeno, T.;
Yamada, T. Chem. Lett. 2004, 33, 614; (b) Kogami, Y.; Nakajima, T.;
Ikeno, T.; Yamada, T. Synthesis 2004, 12, 1947.
t-C4H9
t-C4H9
t-C4H9
i-C3H7
i-C3H7
i-C3H7
i-C3H7
C2H5
13
67
56
49
43
83
72
12
43
6. (a) Christensen, C.; Juhl, K.; Jorgensen, K. A. Chem. Commun. 2001,
2222; (b) Christensen, C.; Juhl, K.; Hazell, R. G.; Jorgensen, K. A. J.
Org. Chem. 2002, 67, 4875; (c) Evans, D. A.; Seidel, D.; Rueping, M.;
Lam, H. W.; Shaw, J. T.; Downey, C. W. J. Am. Chem. Soc. 2003,
125, 12692; (d) Du, D. M.; Lu, S. F.; Fang, T.; Xu, J. J. Org. Chem.
2005, 70, 3712; (e) Maheswaran, H.; Prasant, K. L.; Krishna, G. G.;
Ravikumar, K.; Sridhar, B.; Kantam, M. L. Chem. Commun. 2006,
4066; (f) Bandini, M.; Piccinelli, F.; Tommasi, S.; Umani-Ronchi, A.;
Ventrici, C. Chem. Commun. 2007, 616; (g) Blay, G.; Climent, E.;
Fernandez, I.; -Olmos, H.; Pedro, J. R. Tetrahedron: Asymmetry
2007, 18, 1603; (h) Ma, K.; You, J. Chem. Eur. J. 2007, 13, 1863; (i)
Arai, T.; Watanabe, M.; Yanagisawa, A. Org. Lett. 2007, 9, 3595.
C2H5
C2H5
C2H5
Determined by GC and 1H NMR.
Determined by chiral HPLC.
Not determined.
b
c