irrad. at 1.85 ? d, J = 10.6, CHb–C(8)), 3.73 (dd, J ≈ 8.6, 1.8, irrad. at
2.65? d, J = 8.7, irrad. at 3.99 ? t, J = 1.9, H–C(5)), 3.62 (dd, J ≈ 11.1,
8.0, irrad. at 1.85 ? d, J = 10.6, –CHa–C(8)), 2.88, br. dd, J ≈ 11.2, 2.0,
irrad. at 1.85 ? d, J = 11.2, irrad. at 2.65 ? d, J ≈ 5.0, Ha–C(3)), 2.75 (br
q, J ≈ 2.4, irrad. at 1.52 ? br. t, J ≈ 2.5, irrad. at 1.85 ? t, J = 2.2, irrad.
at 3.99 ? change, H–C(1)); 2.65 (dd, J ≈ 11.4, 1.8, Hb–C(3)), 1.76–1.95
(m, irrad. at 1.52 ? change, irrad. at 2.75 ? change, Hendo–C(7), H–C(8)),
1.52 (dd, J = 7.8, 3.4, irrad. at 1.85 ? d, J = 2.5, irrad. at 2.75 ? d, J =
7.8, Hexo–C(7)). dC(75 MHz, D2O): 73.49 (d, C(6)), 73.35 (s, C(4)), 70.24
(d, C(5)), 65.00 (t, CH2–C(8)), 41.58 (t, C(3)), 40.53 (d, C(1)), 29.01 (t,
C(7)); MALDI-MS: 190 (100, [M + 1]+), 212 (10, [M + Na]+). Anal. calc.
for C8H15NO4·0.5 H2O: C 48.48, H 8.14, N 7.07%. Found: C 48.28, H 7.91,
N 6.77%.
min to 2 h. The inhibition by 14 and 15, as represented by
1/IC50, shows a linear dependence on pH, revealing inhibition
by the free amines rather than by the ammonium salts. The
inhibition is ca. 4–6 times stronger at pH 5.6 than at pH 4.5 and
again ca. 4–6 times weaker at pH 3.6.∑
Since 15 (pKHA = 8.4) is a stronger base than 14 (pKHA
=
7.5), one expects 14 to be a stronger inhibitor than 15 at pH 4.5
by a factor of about 10. That 14 is 120 times stronger than 15
evidences a hydrophobic interaction of the benzyl group of 14
with the aglycon binding site. Such interactions are well
precedented.10,11
The pH dependence of the inhibition by 14 and 15 evidences
the essential interaction with the catalytic acid, and confirms its
flexibility.12 In contrast to the inhibition by the azole type
inhibitors,4,13–15 that is characterised by a cooperative inter-
action of the inhibitor with the catalytic acid and the catalytic
nucleophile2b the interaction of 14 and 15 with the catalytic
nucleophile appears to play at best a minor role. The inhibitory
activity of 14 and 15 is in agreement with the postulate that a
conformational change of the pyranose ring precedes or
accompanies the enzymatic cleavage of b-glycosides.
∑ The enzyme loses ca. 50% activity at pH 5.5 and ca. 10% at pH 3.5.9
1 (a) C. L. Perrin, R. E. Engler and D. B. Young, J. Am. Chem. Soc., 2000,
122, 4877; (b) A. J. Kirby, The Anomeric Effect and Related
Stereoelectronic Effects at Oxygen, Springer–Verlag, Berlin, 1983; (c)
P. Deslongchamps, Stereoelectronic Effects in Organic Chemistry,
Pergamon Press, Oxford, 1983.
2 Recent reviews on glycosidase mechanisms: (a) D. L. Zechel and S. G.
Withers, Acc. Chem. Res., 2000, 33, 11; (b) T. D. Heightman and A. T.
Vasella, Angew. Chem., Int. Ed., 1999, 38, 750; (c) G. Davies, M. L.
Sinnott and S. G. Withers, in Comprehensive Biochemical Catalysis, ed.
M. Sinnott, Academic Press, London, 1998, 1, p. 119 and references
cited there.
Notes and references
† The esters 9a and 9b were isolated in yields of 41 and 10% from 5.
Selected H-NMR data for 8a: 4.00 (ddt, J = 5.6, 3.4, 2.1, H-C(1)), 2.93
(dd, J ≈ 10.5, 4.9, H-C(5)), 1.95 (ddd, J = 12.5, 5.0, 3.4, Hexo-C(6)), 1.79
(ddd, J = 12.5, 10.6, 2.2, Hendo-C(6)); selected 1H-NMR data for 8b: 4.05
(ddt, J ≈ 5.3, 3.6, 1.4, H-C(1)), 3.06 (ddd, J = 10.0, 5.1, 0.9, H-C(5)), 2.09
3 (a) G. J. Davies, L. Mackenzie, A. Varrot, M. Dauter, A. M.
Brzozowski, M. Schülein and S. G. Withers, Biochemistry, 1998, 37,
11707; (b) I. Tews, A. Perrakis, A. Oppenheim, Z. Dauter, K. S. Wilson
and C. E. Vorgias, Nat. Struct. Biol., 1996, 3, 638; (c) G. Sulzenbacher,
H. Driguez, B. Henrissat, M. Schülein and G. Davies, Biochemistry,
1996, 35, 15280.
1
(ddd, J = 12.8, 10.0, 3.7, Hexo-C(6)), 1.56 (ddd, J = 12.5, 5.0, 1.6, Hendo
-
C(6)). The exo configuration of the diols 10 (exo refers to the face syn to the
C(1)–N bond) was assigned on the basis that J1,6 = 2.1 Hz (10a and 10b)
4 P. Ermert, A. Vasella, M. Weber, K. Rupitz and S. G. Withers,
Carbohydr. Res., 1993, 250, 113.
is smaller than J1,7exo = 3.6 (10a) and 4.4 Hz (10b) and closer to J1,7endo
=
5 T. D. Heightman, M. Locatelli and A. Vasella, Helv. Chim. Acta, 1996,
79, 2190.
2.0 (10a) and 1.7 Hz (10b).8 An attempt to reduce 11a to 13 in one step was
not successful.
6 K. S. E. Tanaka and A. J. Bennet, Can. J. Chem., 1998, 76, 431.
7 (a) K. H. Smelt, Y. Bleriot, K. Biggadike, S. Lynn, A. L. Lane, D. J.
Watkin and G. W. J. Fleet, Tetrahedron Lett., 1999, 40, 3255; (b) K. H.
Smelt, A. J. Harrison, K. Biggadike, M. Müller, K. Prout, D. J. Watkin
and G. W. J. Fleet, Tetrahedron Lett., 1999, 40, 3259; (c) A. Stütz,
Iminosugars as Glycosidase Inhibitors: Nojirimycin and Beyond,
Wiley–VCH, Weinheim, 1999.
‡ Data for 14: Rf (AcOEt–MeOH 5+1), 0.40; dH(300 MHz, CD3OD):
7.40–7.13 (m, arom. H), 3.88 (dd, J = 12.1, 6.5, CH2OH), 3.85 (dd, J = 8.4,
2.1, irrad. at 2.66 ? d, J = 8.4, H-C(6), 3.81, 3.72 (2d, J = 13.1, N-CH2Ph),
3.65 (dd, J = 10.6, 6.5, CH2OH), 3.60 (dd, J = 8.4, 1.3, H-C(5)); 2.89 (dd,
J ≈ 9.5, 1.8, Hb-C(3)), 2.66 (br q, J ≈ 2.6, H-C(1)), 2.47 (dd, J ≈ 9.6, 1.6,
irrad. at 2.89 ? d, J = 4.4, Ha-C(3)), 1.84–1.61 (m, irrad. at 2.66 ? change,
irrad. at 2.89 ? change, Hexo-C(7), H-C(8)), 1.59 (ddd, J ≈ 13.7, 10.6, 2.8,
irrad. at 2.66 ? change, Hendo-C(7)); dC(75 MHz, CD3OD): 140.54 (s),
130.22 (d), 129.60 (d); 128.38 (arom. C); 73. 56 (s, C(4)); 73.45 (d, C(6));
70.33 (d, C(5)); 63.81 (t, CH2OH), 61.29 (t, N-CH2Ph), 56.82 (d, C(1)),
51.32 (t, C(3)), 40.14 (d, C(8)), 24.89 (d, C(7)); ESI–MS: 280 ([M + 1]+),
302 ([M + Na]+). Anal. calc. for C15H21NO4·0.5H2O: C 62.48, H 7.69, N
4.86%. Found: C 62.24, H 7.47, N 4.83%.
8 G. H. Posner, V. Vinader and K. Afarinkia, J. Org. Chem., 1992, 57,
4088.
9 B. V. McCleary, Carbohydr. Res., 1983, 111, 297.
10 (a) A. Blaser and J.-L. Reymond, Org. Lett., 2000, 2, 1733; (b) A. M.
Davis and S. J. Teague, Angew. Chem., Int. Ed., 1999, 38, 737.
11 N. Panday, Y. Canac and A. Vasella, Helv. Chim. Acta, 2000, 83, 58.
12 S. L. Lawson, W. W. Wakarchuk and S. G. Withers, Biochemistry,
1997, 36, 2257.
13 N. Panday and A. Vasella, Synthesis, 1999, 1459.
14 K. Tatsuta, Y. Ikeda and S. Miura, J. Antibiot., 1996, 49, 836.
15 K. Tatsuta, S. Miura, S. Ohta and H. Gunji, J. Antibiot., 1995, 48,
286.
§ Snail b-mannosidase: at 25 °C and pH 4.5; jack bean a-mannosidase: at
37 °C and pH 4.5; b-glucosidase from Caldocellum saccharolyticum: at
55 °C and pH 6.8.
¶ Data for 15: Rf (AcOEt–MeOH 5:1): 0.40; dH(300 MHz, D2O): 3.99 (dd,
J ≈ 8.6, 2.1, irrad. at 2.75 ? d, J = 8.7, H-C(6)), 3.85 (dd, J = 10.9, 5.3,
1830
Chem. Commun., 2000, 1829–1830