6788
G. Shanthi, P. T. Perumal / Tetrahedron Letters 48 (2007) 6785–6789
18. (a) Babu, G.; Perumal, P. T. Aldrichim. Acta 2000, 33, 16–
Supplementary data
22; (b) Babu, G.; Perumal, P. T. Tetrahedron Lett. 1997,
38, 5025–5026; (c) Babu, G.; Perumal, P. T. Tetrahedron
1998, 54, 1627–1638; (d) Babu, G.; Nagarajan, R.;
Natarajan, R.; Perumal, P. T. Synthesis 2000, 661–667;
(e) Shanthi, G.; Subbulakshmi, G.; Perumal, P. T.
Tetrahedron 2007, 2057–2063.
Supplementary data associated with this article can be
References and notes
19. Several Hantzsch dihydropyridine derivatives were syn-
thesized and applied in this reaction. Other 4,4-dihydro
derivatives afforded the products, but the yields were
slightly lower than with 3. 4-Substituted (alkyl or aryl)
Hantzsch dihydropyridines did not react under the
conditions.
20. General procedure for the synthesis of 2-amino-4H-chro-
mene-3-carbonitrile: To a stirred mixture of appropriate
salicylaldehyde (1 mmol), malononitrile (1 mmol) and
Hantzsch dihydropyridine ester (1 mmol) in water:ethanol
(1:1) (10 mL), a catalytic amount of indium(III) chloride
(20 mol %) was added and the mixture was stirred at room
temperature for the appropriate time (Table 1). After
complete conversion as indicated by TLC, the product was
extracted with ethyl acetate (2 · 15 mL). The combined
extracts were dried over anhydrous Na2SO4 and concen-
trated in vacuo. The resulting product was purified by
column chromatography on silica gel (Merck, 60–120
mesh, ethyl acetate–hexane, 2:8) to afford pure product
(4a–e).
1. For recent reviews, see: (a) Ugi, I.; Domling, A.; Werner,
B. J. Heterocycl. Chem. 2000, 37, 647–658; (b) Bienayme,
H.; Hulme, C.; Oddon, G.; Schmitt, P. Chem. Eur. J. 2000,
6, 3321–3329; (c) Ugi, I.; Heck, S. Comb. Chem. High
Throughput Screening 2001, 4, 1–34.
2. Strecker, A. Justus Liebigs Ann. Chem. 1850, 75, 27–45.
3. (a) Shestopalov, A. M.; Emeliyanova, Y. M.; Shestiopo-
lov, A. A.; Rodinovskaya, I. A.; Niazimbetova, A. I.;
Evans, D. H. Org. Lett. 2002, 4, 423–425; (b) Bagley, M.
C.; Cale, J. W.; Bower, J. Chem. Commun. 2002, 1682–
1683; (c) Bora, U.; Saikia, A.; Boruah, R. C. Org. Lett.
2003, 5, 435–438; (d) Dallinger, D.; Gorobets, N. Y.;
Kappe, C. O. Org. Lett. 2003, 5, 1205–1208.
4. Murakami, Y.; Kikuchi, J.; Hisaeda, Y.; Hayashida, O.
Chem. Rev. 1996, 96, 721–758.
5. (a) Coleman, C. A.; Rose, J. G.; Murray, C. J. J. Am.
Chem. Soc. 1992, 114, 9755–9762; (b) Fukuzumi, S.;
Nishizawa, N.; Tanaka, T. J. Org. Chem. 1984, 49, 3571–
3578.
6. (a) Fukuzumi, S.; Mochizuki, S.; Tanaka, T. J. Am. Chem.
Soc. 1989, 111, 1497–1499; (b) Tanner, D. D.; Singh, H.
K.; Kharrat, A.; Stein, A. R. J. Org. Chem. 1987, 52,
2142–2146; (c) Tanner, D. D.; Stein, A. R. J. Org. Chem.
1988, 53, 1642–1646.
7. (a) Kanomata, N.; Suzuki, M.; Yohida, M.; Nakata, T.
Angew. Chem., Int. Ed. 1998, 37, 1410–1412; (b) Fuku-
zumi, S.; Ishikama, M.; Tanaka, T. Tetrahedron 1984, 42,
1021–1034.
21. 2-Amino-4H-chromene-3-carbonitrile 4a (Table 1, entry 1):
white solid; mp: 125 ꢁC. mmax (KBr): 3447, 3335, 2190,
1
1661, 1412, 1267, 1229, 753 cmÀ1. H NMR (DMSO-d6,
500 MHz): d 3.41 (s, 2H), 6.77 (br s, 2H, NH2), 6.91 (d,
1H, J = 7.65 Hz), 7.05 (t, 1H, J = 6.15 Hz), 7.14 (d, 1H,
J = 7.65 Hz), 7.17 (t, 1H, J = 7.6 Hz). 13C NMR (DMSO-
d6, 125 MHz): d 24.1, 49.4, 116.4, 120.1, 121.6, 124.9,
128.4, 129.3, 149.8, 161.4. MS (m/z): 172 (M+). Anal.
Calcd for C10H8N2O: C, 69.76; H, 4.68; N, 16.27. Found:
C, 69.70; H, 4.64; N, 16.23.
22. 3-Amino-1H-benzo[f]chromene-2-carbonitrile 7: light yel-
low solid; mp: 196 ꢁC. mmax (KBr): 3444, 3314, 2190, 1674,
8. (a) Lu, Y.; Liu, B.; Cheng, J.-P. Chem. J. Chin. Univ. 1997,
18, 391–394; (b) Merjer, J. P.; Van Niel, J. C. G.; Pandit,
U. K. Tetrahedron 1984, 40, 5185–5195.
1588, 1409, 1236, 808, 739 cmÀ1 1H NMR (DMSO-d6,
.
500 MHz): d 3.74 (s, 2H), 6.84 (br s, 2H, NH2), 7.14 (d,
1H, J = 9.15 Hz), 7.46 (t, 1H, J = 6.9 Hz), 7.56 (t, 1H,
J = 6.85 Hz), 7.79 (t, 2H, J = 8.4 Hz), 7.89 (d, 1H,
J = 8.4 Hz).13C NMR (DMSO-d6, 125 MHz): d 22.2,
49.8, 112.4, 117.2, 121.8, 123.5, 125.6, 127.8, 128.8,
129.2, 130.7, 131.3, 146.8, 160.8. MS (m/z): 222 (M+).
Anal. Calcd for C14H10N2O: C, 75.66; H, 4.54; N, 12.60.
Found: C, 75.62; H, 4.49; N, 12.52.
9. (a) Zhu, X.-Q.; Liu, Y.-C. J. Org. Chem. 1998, 63, 2786–
2787; (b) Zhu, X.-Q.; Liu, Y.-C.; Cheng, J.-P. J. Org.
Chem. 1999, 64, 8980–8981; (c) Zhu, X.-Q.; Zou, H.-L.;
Yaun, P.-W.; Yang, L.; Liu, Y.; Cao, L.; Cheng, J.-P. J.
Chem. Soc., Perkin Trans. 2 2000, 1857–1861.
10. Garden, S. J.; Guimaraes, C. R. W.; Correa, M. B.;
Oliviera, C. A. F.; Pinto, A. C.; Bicca de Alencastro, R. J.
Org. Chem. 2003, 68, 8815–8822.
23. Houlihan, W. J.; Remers, W. A.; Brown, R. K. Indoles:
Part I; Wiley: New York, NY, 1992.
11. Kanomata, N.; Nakata, T. Angew. Chem., Int. Ed. 1997,
36, 1207–1211.
24. (a) Wu, H. Y.; Shyy, S. H.; Wang, J. C.; Liu, L. F. Cell
1988, 53, 433–440; (b) Merino, A.; Madden, K. R.; Lane,
W. S.; Champoux, J. J.; Deinberg, D. Nature 1993, 365,
227–232; (c) Ramirez, A.; Garcia-Rubio, S. Curr. Med.
Chem. 2003, 10, 1891–1915.
12. Ellis, G. P. In In the Chemistry of Heterocyclic Com-
pounds. Chromenes, Chromanes, and Chromones; Weiss-
berger, A., Taylor, E. C., Eds.; John Wiley: New York,
1977; Chapter II, pp 11–141.
13. Hafez, E. A.; Elnagdi, M. H.; Elagamey, A. G. A.; El-
Taweel, F. M. A. A. Heterocycles 1987, 26, 903–907.
14. Hiramoto, J.; Nasuhara, A.; Michiloshi, K.; Kato, T.;
Kikugawa, K. Mutat. Res. 1997, 395, 47–56.
15. Bianchi, G.; Tava, A. Agric. Biol. Chem. 1987, 51, 2001–
2002.
16. (a) Elagamey, A. G. A.; El-Taweel, F. M. A. A. Indian J.
Chem. 1990, 29B, 885–886; (b) Bloxham, J.; Dell, C. P.;
Smith, C. W. Heterocycles 1994, 38, 399–408.
25. General procedure for the synthesis of indolyl chromenes:
To a stirred mixture of salicylaldehyde (1 mmol), malono-
nitrile (1 mmol) and indole (1 mmol) in water (10 mL), a
catalytic amount of indium(III) chloride (20 mol %) was
added and the mixture was stirred at room temperature
for the appropriate time (Scheme 5). After complete
conversion as indicated by TLC, the product was
extracted with ethyl acetate (2 · 15 mL). The combined
extracts was dried over anhydrous Na2SO4 and concen-
trated in vacuo. The resulting product was purified by
column chromatography on silica gel (Merck, 60–120
mesh, ethyl acetate–hexane, 3:7) to afford pure product
(9a–g).
17. For reviews on indium Lewis acids see: (a) Frost, C. G.;
Chauhan, K. K. J. Chem. Soc., Perkin Trans. 1 2000, 3015–
3019; (b) Fringuelli, F.; Piermatti, O.; Pizzo, F.; Vaccaro,
L. Curr. Org. Chem. 2003, 7, 1661–1689; (c) Frost, C. G.;
Hartley, J. P. Mini-Rev. Org. Chem. 2004, 1, 1–7.