J. Am. Chem. Soc. 1996, 118, 11783-11788
11783
Catalytic Iron-Mediated [4 + 1] Cycloaddition of Diallenes
with Carbon Monoxide
Matthew S. Sigman and Bruce E. Eaton*
Contribution from the Department of Chemistry, Washington State UniVersity,
Pullman, Washington 99164-4630
X
ReceiVed August 19, 1996
Abstract: Conjugated diallenes undergo stereoselective [4 + 1] cycloadditions in a variety of solvents. Accelerated
thermal exchange of CO in Fe(CO)5 is catalyzed by the diallene substrate, consistent with the previous kinetic analysis.
q
-1
q
The Eyring activation parameters were determined to be ∆H ) 16.2 ((0.7) kcal mol and ∆S ) -17.9 ((2.3)
-
1
-1
cal mol K . The negative entropy of activation is consistent with rate determining associative coordination of
diallene to form a diallene-iron complex. The effect of coordinating solvents on this cycloaddition reaction suggests
that the synthetic utility of these transformations can now be expanded to include diallenes with functional groups
that may only weakly coordinate to the iron. Only one sterically demanding substituent on the diallene termini is
necessary to give good π-facial selectivity, which also expands the synthetic utility of these transformations.
Introduction
monoxide to give 2,5-dialkylidenecyclopentenones.6 These
molecules have been important for the investigation of reactivity
and electronic structure in planar cross-conjugated π-systems.
The biological activity and material science applications of 2,5-
dialkylidenecyclopentenones have yet to be fully investigated.7
Until recently iron carbonyls catalytically mediating carbon-
carbon bond formation was unprecedented. Historically, carbon-
carbon bond chemistry accomplished with iron carbonyls had
Many small molecule drugs contain five-membered carbo-
cyclic rings, such as prostaglandins,1 methylenomycin antibiot-
ics, and clavirideneone antineoplastics.3 Transition-metal medi-
ated assembly of five-membered carbocycles could prove to be
an important methodology for the synthesis of these ring
systems. Syntheses of carbocyclic rings has been accomplished
,2
4
5
by [3 + 2] and the Pauson-Khand [2 + 2 + 1] cycloadditions.
Adding to the scope of transition-metal mediated synthesis of
five-membered rings was the discovery of catalytic iron-
mediated [4 + 1] cycloaddition of diallenes with carbon
8
been stoichiometric. In addition, catalytic iron carbonyl [4 +
1] cycloaddition reactions did not appear to require the extremes
of thermal and/or photochemical activation that usually ac-
company the use of Fe(CO)5. Herein we report a more detailed
study of these new cycloaddition reactions.
X
Abstract published in AdVance ACS Abstracts, November 15, 1996.
1) (a) Oats, J. A.; Fitzgerald, G. A.; branch, R. A.; Jackson, E. K.; Knapp,
(
H. R.; Roberts, L. J., II New Eng. J. Med. 1988, 319, 689. (b) Narumiya,
S.; Fukushima, M. J. Pharmacol. Exp. Ther. 1986, 239, 500. (c) Atsmon,
J.; Freeman, M. L.; Meredith, M. J.; Sweetman, B. J.; Roberts, L. J., II
AdVances in Prostaglandin, Thromboxane and Leukotriene Research,
Raven: New York, 1990; Vol. 21, p 887. (d) Hirata, M.; Ohno, K. AdVances
in Prostaglandin, Thromboxane and Leukotriene Research, Raven: New
York, 1990; Vol. 21, p 859. (e) Hada, A.; Yamamoto, Y.; Mori, Y.; Yamada,
Y.; Kikuchi, H. Biochem. Biophys. Res. Commun. 1985, 130, 515. (f) Kato,
T.; Fukushima, M.; Kurozumi, S.; Noyori, R. Cancer Res. 1986, 46, 3538.
(2) (a) Stork, G.; Isobe, M. J. Am. Chem. Soc. 1975, 97, 4745. (b) Stork,
G.; Isobe, M. J. Am. Chem. Soc. 1976, 97, 6260. (c) Sugiura, S.; Hazato,
A.; Tanaka, T.; Okamura, N.; Bannai, K; Manabe, K.; Kurozumi, S.; Suzuki,
M.; Noyori, R. Chem. Pharm. Bull. 1985, 33, 4120. (d) Nakazawa, M.;
Sakamoto, Y.; Takahashi,T.; Tomooka, K.; Ishikawa, K.; Nakai, T.
Tetrahedron Lett. 1993, 34, 5923.
(
3) (a) Smith, A. B., III; Branca, S. J.; Philla, N. N.; Guarciaro, M. A.
The discovery of the [4 + 1] cycloaddition of diallenes with
CO resulted from the treatment of 1 with stoichiometric amounts
of Fe2(CO)9 to yield cycloaddition product 5 in less than 9 min.
The catalytic [4 + 1] cycloaddition was achieved for 1-4 by
treatment with Fe(CO)5 (10 mol%, 17 mM CO) and gave highly
stereoselective product formation and good yields (72-81%)
of 5-8 (eq 1). Based on the previously published kinetic
analysis (Table 1), differences in reactivity of the diallene
J. Org. Chem. 1982, 47, 1855. (b) Corey, E. J.; Mehrota, M. M. J. Am.
Chem. Soc. 1984, 106, 3384. (c) Reference 2c. (d) Iwasaki, G.; Sano, M.;
Sodeoka, M.; Yoshida, K.; Shigasaki, M. I J. Org. Chem. 1988, 33, 4864.
(
1
e) Iguchi, K.; Kaneta, S.; Nagaoka, H.; Yamada, Y. Chem. Lett. 1989,
60, 157.
4) For recent transition-metal mediated [3 + 2] cycloadditions, see: (a)
Danheiser, R. L.; Dixon, B. R.; Gleason, R. W. J. Org. Chem. 1992, 57,
(
6
1
1
1
094. (b) Trost, B. M.; Grese, T. A.; Chan, D. M. T. J. Am. Chem. Soc.
991, 113, 7350. (c) Trost, B. M.; Matelich, M. C. J. Am. Chem. Soc. 1991,
13, 9007. (d) Boivin, J.; Tailhan, C.; Zard, S. Z. J. Am. Chem. Soc. 1991,
13, 5874. (e) Rathjen, H. J.; Margaretha, P.; Wolff, S.; Agosta, W. C. J.
Am. Chem. Soc. 1991, 113, 3904. (f) Trost, B. M. Angew. Chem., Int. Ed.
Engl. 1986, 25, 1. (g) Danheiser, R. L.; Carini, D. J.; Fink, D. M.; Basak,
A. Tetrahedron 1983, 39, 935. (h) Noyori, R. Acc. Chem. Res. 1979, 12,
(6) Eaton, B. E.; Rollman, B.; Kaduk, J. A. J. Am. Chem. Soc. 1992,
114, 6245.
(7) (a) Desiraju, G. R.; Bernstein, J.; Kishan, K. V. Radha; S.; Jagarlapudi
A. R. P. Tetrahedron Lett. 1989, 30, 3029. (b) Ten Hoeve, W.; Wynberg,
H. J. Org. Chem. 1980, 45, 2930. (c) Heller, H. G.; Piggott, R. D. J. Chem.
Soc., Perkin Trans. 1 1978, 989.
6
1.
(
5) For recent Pauson-Khand cycloadditions, see: (a) Jeong, N.; Hwang,
S. H.; Lee, Y.; Chung, Y. K. J. Am. Chem. Soc. 1994, 116, 3159. (b)
Pearson, A. J.; Shively, R. J. Jr.; Dubbert, R. A. Organometallics 1992,
(8) (a) Alper, H. In Organic Synthesis Via Metal Carbonyls; Wender,
P., Ed.; Wiley: New York, 1977; Vol. 2, pp 545-593. (b) Pearson, A. J.;
Perosa, A. Organometallics 1995, 14, 5178. (c) Pearson, A. J.; Dubbert, R.
A. Organometallics 1994, 13, 1656. (d) Fatiadi, A. J. J. Res. Natl. Stand.
Technol. 1990, 96, 1.
1
1, 4096. (c) Schore, N. E. In ComprehensiVe Organic Syntheis; Trost, B.
M., Ed.; Pergamon: Oxford, 1991; Vol. 5, p 1037. (d) Schore, N. E. Org.
React. (N.Y.) 1991, 41, 1. (e) Schore, N. E. Chem. ReV. 1988, 88, 1081.
S0002-7863(96)02908-3 CCC: $12.00 © 1996 American Chemical Society