114
K. Adamiak et al. / Journal of Molecular Catalysis B: Enzymatic 84 (2012) 108–114
and a one-pot synthesis strategy combinatorial biocatalysis with
three enzymes was applied to obtain functionalized LacNAc
oligomers. Immobilization of LacNAc oligomers onto aminore-
active surfaces via 1,3 dipolar cycloaddition or an amino-linker
revealed linker length as well as repeated LacNAc-units to promote
galectin binding. This innovative and flexible toolbox system of
carbohydrate ligands can be used for the biofunctionalization of
hydrogel-coated biomaterial surfaces and is therefore a promising
step towards biomedical applications.
[13] B. Sauerzapfe, K. Krˇenek, J. Schmiedel, W.W. Wakarchuk, H. Pelantova, V. Krˇen,
L. Elling, Glycoconjugate J. 26 (2009) 141–159.
[14] K.G. Witten, C. Rech, T. Eckert, S. Charrak, W. Richtering, L. Elling, U. Simon,
Small 7 (2011) 1954–1960.
[15] C. Rech, R.R. Rosencrantz, K. Krˇenek, H. Pelantová, P. Bojarová, C. Römer, F.-G.
Hanisch, V. Krˇen, L. Elling, Adv. Synth. Catal. 353 (2011) 2492–2500.
[16] D.G. Drueckhammer, W.J. Hennen, R.L. Pederson, C.F. Barbas Iii, C.M. Gautheron,
T. Krach, C.-H. Wong, Synthesis 499 (1991) 525.
[17] C.H. Wong, R.L. Halcomb, Y. Ichikawa, T. Kajimoto, Angew. Chem. Int. Ed. Engl.
34 (1995) 521–546.
[18] I. Brockhausen, M. Benn, S. Bhat, S. Marone, J.G. Riley, P. Montoya-Peleaz, J.Z.
Vlahakis, H. Paulsen, J.S. Schutzbach, W.A. Szarek, Glycoconjugate J. 23 (2006)
525–541.
[19] B. Sauerzapfe, D.J. Namdjou, T. Schumacher, N. Linden, K. Krˇenek, V. Krˇen, L.
Acknowledgements
Elling, J. Mol. Catal. B: Enzymatic 50 (2008) 128–140.
[20] S. Bernatchez, C.M. Szymanski, N. Ishiyama, J.J. Li, H.C. Jarrell, P.C. Lau, A.M.
Berghuis, N.M. Young, W.W. Wakarchuk, J. Biol. Chem. 280 (2005) 4792–4802.
[21] D.J. Namdjou, B. Sauerzapfe, J. Schmiedel, G. Drager, S. Bernatchez, W.W.
Wakarchuk, L. Elling, Adv. Synth. Catal. 349 (2007) 314–318.
[22] S.M. Logan, E. Altman, O. Mykytezuk, J.R. Brisson, V. Chandan, F. St Michael, A.
Masson, S. Leclerc, K. Hiratsuka, N. Smirnova, J.J. Li, Y.Y. Wu, W.W. Wakarchuk,
Glycobiology 15 (2005) 721–733.
Financial support by the DFG (EL 135/8-1, MO 682/8-1) and
by the excellence initiative of the German Federal and State Gov-
ernments through ERS@RWTH Aachen University is gratefully
acknowledged. We thank Dr. Wolfgang Bettray (Institute of Organic
Chemistry, RWTH Aachen University) for ESI-MS measurements
and Janine Schmitz for the syntheses of saccharide 5c.
[23] D. Horton, Org. Synth. 46 (1966) 1.
[24] F.M. Ibatullin, K.A. Shabalin, Synth. Commun. 30 (2000) 2819–2823.
[25] W. Koenigs, E. Knorr, Chem. Ber. 34 (1901) 957–981.
[26] G. Wulff, G. Roehle, Angew. Chem. 86 (1974) 173–187.
[27] G. Wulff, G. Roehle, Chem. Ber.-Recueil 105 (1972) 1122.
[28] G. Zemplén, E. Pacsu, Ber. Deut. Chem. Gesellschaft (A and B Series) 62 (1929)
1613–1614.
Appendix A. Supplementary data
Supplementary data associated with this article can be found, in
[29] T. Anders, K. Adamiak, H. Keul, L. Elling, M. Möller, Macromol. Biosci. 11 (2011)
1201–1210.
[30] N. Brinkmann, M. Malissard, M. Ramuz, U. Romer, T. Schumacher, E.G. Berger,
L. Elling, C. Wandrey, A. Liese, Bioorg. Med. Chem. Lett. 11 (2001) 2503–2506.
[31] A. Drozdová, P. Bojarová, K. Krˇenek, L. Weignerová, B. Henßen, L. Elling, H. Chris-
tensen, H. Jensen, H. Pelantová, M. Kuzma, B. Karel, M. Krupová, D. Adámek, K.
Slámová, V. Krˇen, Carbohydr. Res. 346 (2011) 1599–1609.
[32] O. Blixt, J. Brown, M.J. Schur, W. Wakarchuk, J.C. Paulson, J. Org. Chem. 66 (2001)
2442–2448.
References
[1] M. Ujita, J. McAuliffe, O. Hindsgaul, K. Sasaki, M.N. Fukuda, M. Fukuda, J. Biol.
Chem. 274 (1999) 16717–16726.
[2] D.P. Zhou, Curr. Protein Pept. Sci. 4 (2003) 1–9.
[3] F.C. Brewer, Biochim. Biophys. Acta – General Subjects 1572 (2002) 255–262.
[4] M.T. Elola, C. Wolfenstein-Todel, M.F. Troncoso, G.R. Vasta, G.A. Rabinovich,
Cell. Mol. Life Sci. 64 (2007) 1679–1700.
[33] F. Fazio, M.C. Bryan, H.K. Lee, A. Chang, C.H. Wong, Tetrahedron Lett. 45 (2004)
2689–2692.
[5] O. Blixt, S. Head, T. Mondala, C. Scanlan, M.E. Huflejt, R. Alvarez, M.C. Bryan,
F. Fazio, D. Calarese, J. Stevens, N. Razi, D.J. Stevens, J.J. Skehel, I. van Die, D.R.
Burton, I.A. Wilson, R. Cummings, N. Bovin, C.H. Wong, J.C. Paulson, Proc. Natl.
Acad. Sci. USA 101 (2004) 17033–17038.
[34] J. Seibel, H. Hellmuth, B. Hofer, A.-M. Kicinska, B. Schmalbruch, ChemBioChem
7 (2006) 310–320.
[35] F. Fazio, M.C. Bryan, O. Blixt, J.C. Paulson, C.H. Wong, J. Am. Chem. Soc. 124
(2002) 14397–14402.
[6] H. Tateno, A. Mori, N. Uchiyama, R. Yabe, J. Iwaki, T. Shikanai, T. Angata, H.
Narimatsu, J. Hirabayashi, Glycobiology 18 (2008) 789–798.
[7] X. Song, B. Xia, S.R. Stowell, Y. Lasanajak, D.F. Smith, R.D. Cummings, Chem. Biol.
16 (2009) 36–47.
[36] P.J. Walser, P.W. Haebel, M. Kunzler, D. Sargent, U. Kues, M. Aebi, N. Ban, Struc-
ture 12 (2004) 689–702.
[37] M.A. Wälti, P.J. Walser, S. Thore, A. Grünler, M. Bednar, M. Künzler, M. Aebi, J.
Mol. Biol. 379 (2008) 146–159.
[8] B.T. Houseman, M. Mrksich, Chem. Biol. 9 (2002) 443–454.
[9] S.J. Park, I.J. Shin, Angew. Chem. Int. Ed. Engl. 41 (2002) 3180–3182.
[10] J.C. Paulson, O. Blixt, B.E. Collins, Nat. Chem. Biol. 2 (2006) 238–248.
[11] T. Murata, H. Honda, T. Hattori, T. Usui, Biochim. Biophys. Acta – General Sub-
jects 1722 (2005) 60–68.
[38] P. Gasteier, A. Reska, P. Schulte, J. Salber, A. Offenhäusser, M. Möller, J. Groll,
Macromol. Biosci. 7 (2007) 1010–1023.
[39] D. Grafahrend, K.-H. Heffels, M.V. Beer, P. Gasteier, M. Möller, G. Boehm, P.D.
Dalton, J. Groll, Nat. Mater. 10 (2010) 67–73.
[40] J. Groll, E.V. Amirgoulova, T. Ameringer, C.D. Heyes, C. Röcker, G.U. Nienhaus,
M. Möller, J. Am. Chem. Soc. 126 (2004) 4234–4239.
[41] C.D. Heyes, J. Groll, M. Moller, G.U. Nienhaus, Mol. BioSyst. 3 (2007) 419–430.
[12] D. Vasiliu, N. Razi, Y.N. Zhang, N. Jacobsen, K. Allin, X. Liu, J. Hoffmann, O.
Bohorov, O. Blixt, Carbohydr. Res. 341 (2006) 1447–1457.