LETTER
Lithiated Benzothiophenes and Benzofurans Require 2-Silyl Protection
1353
(7) Changes in solvent, addition rate or reaction temperature had
little impact on the product to benzothiophene ratio.
However, inverse addition of the Grignard reagent to the
ketone in THF at reflux significantly increased the amount of
enolization (0.3:1 ratio of 4:5).
1.5 equiv n-BuLi,
1.5 equiv TMEDA,
hexane, r.t., 20 h
LDA, TIPSCl,
THF, r.t., 3 d
S
S
98%
Si
(i-Pr)3
18
5
(8) (a) Due to cost and waste disposal issues, the classical
approach using CeCl3 was not investigated, see: Liu, H.;
Shia, K.; Shang, X.; Zhu, B. Tetrahedron 1999, 55, 3803.
(b) The organotitanium reagent made from ClTi(Oi-Pr)3 was
unreactive, see: Hutton, J.; Jones, A. D.; Lee, S. A.; Martin,
D. M. G.; Meyrick, B. R.; Patel, I.; Peardon, R. F.; Powell,
L. Org. Process Res. Dev. 1997, 1, 61. (c) TMEDA as an
additive was not investigated, but has been reported to
suppress enolization in a related case, see: Herrinton, P. M.;
Owen, C. E.; Gage, J. R. Org. Process Res. Dev. 2001, 5, 80.
(9) (a) Dickinson, R. P.; Iddon, B. J. Chem. Soc. C 1968, 2733.
(b) Dickinson, R. P.; Iddon, B. J. Chem. Soc. C 1971, 3447.
(c) Scrowston, R. M. Recent Advances in the Chemistry of
Benzo[b]thiophenes, In Advances in Heterocyclic
TFA,
CH2Cl2,
r.t., 3.5 h
S
Ketone 2,
THF,
HO
Li
–78 °C
S
BocN
1
Si
(i-Pr)3
63%
76%
Si
(i-Pr)3
20
19
Scheme 6
In conclusion we have shown that 2-TMS protected
benzothiophene and benzofuran substrates enable metal-
halogen exchange to provide useful lithiated intermedi-
ates. These lithiated intermediates provide superior results
in additions to ketones relative to the corresponding
Grignard reagents. 2-TIPS protection of benzothiophene
allows directed metalation at C-7, providing an expedient
route to 7-susbstituted benzothiophenes.
Chemistry, Vol 29; Katritzky, A. R., Ed.; Academic Press:
London, 1981, 171–249. (d) Rajappa, S.; Natekar, M. V.
Thiophenes and their Benzo Derivatives: Reactivity, In
Comprehensive Heterocyclic Chemistry II, Vol 2; Katritzky,
A. R.; Rees, C. W.; Scriven, E. F. V., Eds.; Pergamon:
Oxford, 1996, 419–606. (e) See ref.8b
(10) Wu, X.; Chen, T.; Zhu, L.; Rieke, R. D. Tetrahedron Lett.
1994, 35, 3673.
(11) Snieckus, V. Chem. Rev. 1990, 90, 879.
Acknowledgment
(12) (a) Samanta, S. S.; Ghosh, S. C.; De, A. J. Chem. Soc.,
Perkin Trans. 1 1997, 2683. (b) Sakamoto, Y.; Komatsu, S.;
Suzuki, T. J. Am. Chem. Soc. 2001, 123, 4643.
(13) In these cases silicon directs the initial metalation, rather
than preventing a subsequent proton transfer: (a) Kamila,
S.; Mukherjee, C.; Mondal, S. S.; De, A. Tetrahedron 2003,
59, 1339. (b) Ghosh, S. C.; De, A. J. Chem. Soc., Perkin
Trans. 1 1999, 3705. (c) Mandal, S. S.; Samanta, S. S.; Deb,
C.; De, A. J. Chem. Soc., Perkin Trans. 1 1998, 2559.
(14) See ref.11
We thank Dr. Vincent Rocco and Dr. Jean Takeuchi for helpful ad-
vice and the Lilly Research Laboratories Physical Chemistry group
for characterization data. We thank Eli Lilly and Company for a
Summer Intern Fellowship for A. R. McSpadden.
References
(1) Hertel, L. W.; Kohlman, D. T.; Liang, S. X.; Wong, D. T.;
Xu, Y. PCT Int. Appl., WO 00/000198, 2000.
(15) Tetrahydropyridine 1 was isolated as the oxalate salt to aid
in purification and to provide a stable solid for storage.
(16) Procedures for Scheme 4: Compound 7: To 7-bromo-
benzothiophene (3, 34.6 g, 0.16 mmol) in THF (346 mL) at
–78 °C was added TMSCl (41.1 mL, 0.32 mmol) followed
by LDA (Aldrich, 162 mL, 2 M, 0.32 mmol). After 1 h,
workup with 1 N HCl and MTBE followed by plug filtration
through silica gel with hexanes afforded 52.8 g
(2) (a) Wustrow, D. J.; Wise, L. D. Synthesis 1991, 993.
(b) Eastwood, P. R. Tetrahedron Lett. 2000, 41, 3705.
(c) Glase, S. A.; Akunne, H. C.; Heffner, T. G.; Jaen, J. C.;
MacKenzie, R. G.; Meltzer, L. T.; Pugsley, T. A.; Smith, S.
J.; Wise, L. D. J. Med. Chem. 1996, 39, 3179.
(d) Zimmerman, D. M.; Cantrell, B. E.; Reel, J. K.; Hemrick-
Luecke, S. K.; Fuller, R. W. J. Med. Chem. 1986, 29, 1517.
(3) Prepared by alkylation of 2-bromothiophenol with
bromoacetaldehyde diethyl acetal, followed by Amberlyst-
15 catalyzed Friedel–Crafts cyclization, see: Zhang, T. Y.;
Allen, M. J.; Godfrey, A. G.; Vicenzi, J. T., 215th National
Meeting of the American Chemical Society, Dallas, TX,
1998, Poster ORGN 242.
(ethylbenzene corrected = 47.5 g, 100%) of 7-bromo-2-
trimethylsilyl-benzothiophene(7) as an oil. 1H NMR (300
MHz, CDCl3): d = 7.76 (dd, 1 H, J = 7.7, 0.8 Hz), 7.56 (s, 1
H), 7.47 (dd, 1 H, J = 7.7, 0.8 Hz), 7.22 (t, 1 H, J = 7.7 Hz),
0.40 (s, 9 H). 13C NMR (75 MHz, CDCl3): d = 145.0, 143.5,
141.95, 131.5, 126.9, 125.4, 122.3, 115.6, –0.4). MS: m/z =
284 [M+]. Anal. Calcd for C11H13BrSSi: C, 46.31; H, 4.59.
Found: C, 46.07; H, 4.65. Compound 8: To 7 (2.67 g, 9.36
mmol) in THF (15 mL) at –78 °C was added n-BuLi (2.5 M
in hexanes, 4.5 mL, 11.3 mmol, 1.2 equiv). After 10 min, a
solution of piperidone 2 (2.25 g, 11.3 mmol, 1.2 equiv) in
THF (12 mL) was added. After 1 h, workup with 1 N HCl
and toluene afforded 5.62 g of crude 8. Reslurry in 20%
EtOAc/hexane afforded 2.63 g (69%) of 8 as a solid. The
filtrate was chromatographed on flash silica gel to afford
0.84 g (yield = 3.47 g, 92%): mp 153–158 °C. 1H NMR (300
MHz, CDCl3): d = 7.74 (dd, 1 H, J = 7.7, 1.1 Hz), 7.48 (s, 1
H), 7.32 (t, 1 H, J = 7.7, 7.4 Hz), 7.23 (dd, 1 H, J = 7.4, 1.1
Hz), 4.04 (br s, 2 H), 3.30 (br t, 2 H), 2.16 (br t, 2 H), 2.09 (s,
1 H), 1.99 (d, 2 H, J = 12.9 Hz), 1.48 (s, 9 H), 0.38 (t, 9 H,
J = 3.6 Hz). 13C NMR (75 MHz, DMSO): d = 154.0, 143.5,
(4) Product ratios assigned by reverse phase high-pressure
liquid chromatography (HPLC). No other products observed
by HPLC.
(5) For reports of moderate yields where enolization is likely,
see: (a) Merschaert, A.; Delhaye, L.; Kestemont, J.; Brione,
W.; Delbeke, P.; Mancuso, V.; Napora, F.; Diker, K.;
Giraud, D.; Vanmarsenille, M. Tetrahedron Lett. 2003, 44,
4531. (b) Annoura, H.; Nakanishi, K.; Uesugi, M.;
Fukunaga, A.; Imajo, S.; Miyajima, A.; Tamura-Horikawa,
Y.; Tamura, S. Bioorg. Med. Chem. Lett. 2002, 10, 371.
(c) Sui, Z.; De Voss, J. J.; DeCamp, D. L.; Li, J.; Craik, C.
S.; Ortiz de Montellano, P. R. Synthesis 1993, 803.
(6) March, J. Advanced Organic Chemistry, Reactions
Mechanisms and Structure, 4th ed.; John Wiley and Sons:
New York, 1992, 926–927.
Synlett 2004, No. 8, 1351–1354 © Thieme Stuttgart · New York