K. Achilles, G. v. Kiedrowski / Bioorg. Med. Chem. Lett. 15 (2005) 1229–1233
Table 1. Kinetic parameters for the ligation of 19 and 23 or 24 and 22 and 26
1233
Rate constants
19 and 23
19 and 24
22 and 26
k1/MÀ1sÀ1
6.15 0.01·10À1
—
2.85 0.02·10À5
—
4.7
1.31 0.06·10À1
—
1.08 0.12·0À5
—
2.9
2.42 0.13·10À1
1.57 0.36·10À4
5.73 3.34·10À6
1.18 0.40·10À4
2.6
k
À1/sÀ1
k2/sÀ1
k3/sÀ1
RMSa/%
a RMS = root-mean square.
modified with aromatic aldehydes in the 50-position hav-
ing a 30-hydrazide as the reaction partner, the reaction
was fast and irreversible exhibiting comparable rate0con-
stants. The kinetic data fromthe reaction of the 3 -bis-
aldehyde 22 and the 50-hydrazide 26 could be
explained by the assumption of a consecutive mecha-
nism: The reaction seems to proceed reversibly in the
beginning, but becomes irreversible with increasing reac-
tion time. As a reason for this finding we presume a two-
step model: first the hydrazide reacts reversibly with one
aldehyde function of the bisaldehyde, before the forma-
tion of the morpholine ring renders the reaction irrevers-
ible. The reversibility of morpholine formation from
ribobisaldehydes and amino group containing com-
pounds has been described, but for morpholines derived
fromacyl hydrazides reversibility could not implicitly be
suspected.8d,22
2. Xu, Y.; Nilesh, B.; Kool, E. T. Nat. Biotechnol. 2001, 19,
148–152.
3. Metelev, V. G.; Borisova, O. A.; Volkov, E. M.; Orets-
kaya, T. S.; Dolinnaya, N. G. Nucl. Acid Res. 2001, 29,
4062–4069.
4. Czlapinski, J. L.; Sheppard, T. L. J. Am. Chem. Soc. 2001,
123, 8618–8619.
5. Fujimoto, K.; Matsuda, S.; Takahashi, N.; Saito, I. J. Am.
Chem. Soc. 2000, 122, 5646–5647.
6. Li, X.; Zhang, Z.-Y. J.; Knipe, R.; Lynn, D. G. J. Am.
Chem. Soc. 2002, 124, 746–747.
8. (a) Raddatz, S.; Mueller-Ibeler, J.; Kluge, J.; Wass, L.;
Burdinski, G.; Havens, J. R.; Onofrey, T. J.; Wang, D.;
Schweitzer, M. Nucleic Acids Res. 2002, 30, 4793–4802; (b)
Timofeev, E. N.; Kochetkova, S. V.; Mirzabekov, A. D.;
Florentiev, V. L. Nucleic Acids Res. 1996, 24, 4793–4802;
(c) Grimm, G. N.; Boutorine, A. S.; Helene, C. Nucleos.,
Nucleot. Nucleic Acids 2000, 19, 1943–1965; (d) Ghosh, S.
S.; Kao, P. M.; Kwoh, D. H. Anal. Biochem. 1989, 178,
43–51.
9. Eckardt, L. H.; Naumann, K.; Pankau, M. W.; Rein, M.;
Schweitzer, M.; Windhab, N.; von Kiedrowski, G. Nature
2002, 429, 286.
10. Urata, H.; Akagi, M. Tetrahedron Lett. 1993, 34, 4015–
4018.
11. Langland, J. O.; Pettiford, S. M.; Jacobs, B. L. Protein
Express. Purif. 1995, 6, 25–32.
12. Beaucage, S. L.; Radhakrishnan, P. I. Tetrahedron 1993,
49, 1925–2138.
13. Kang, S.-K.; Jeon, J.-H.; Nam, K.-S.; Park, C.-H.; Lee,
H.-W. Synth. Commun. 1994, 24, 305–312.
14. Lewbart, M. L.; Schneider, J. J. J. Org. Chem. 1969, 34,
3505.
15. Surzhikov, S. A.; Timofeev, E. N.; Chernov, B. K.;
Golova, J. B.; Mirzabekov, A. D. Nucleic Acids Res. 2000,
28, E29.
We have described the synthesis and utilization of a
number of versatile building blocks for the 30- and 50-
labeling of oligonucleotides with aldehyde and hydr-
azide functionalities. The reactions of hydrazide- and
aldehyde-modified oligonucleotides as a means to
achieve activator-free ligation were found to be fast, effi-
cient, and irreversible for the case of aromatic alde-
hydes. Hydrazone ligation using ribobisaldehydes
appeared to be reversible at the stage of open-chained
hydrazones or another intermediate and irreversible at
the stage of morpholines. Side reactions of the hydrazide
building blocks raised difficulties for quantitative liga-
tion studies. The nature of this side reaction has to be
ascertained in further studies. Nevertheless, the hydr-
azone formation fulfills most requirements to be em-
ployed as an efficient activator-free ligation chemistry.
16. Schwartz, D. A.; Hogrefe, R. I. PCT Int. Appl. WO
2002010431, 2002.
17. Awada, M.; Dedon, P. C. Chem. Res. Toxicol. 2001, 14,
1247.
Acknowledgements
18. Summerton, J.; Weller, D. Antisense Nucl. Acid Drug Dev.
1997, 7, 187–195.
19. Sievers, D.; von Kiedrowski, G. Chem. Eur. J. 1998, 4,
629–641.
This research was supported by the Deutsche Fors-
chungsgemeinschaft (DFG), the BMBF, and Cost D27.
20. By-products could not be observed by RP-HPLC and in
MALDI-TOF-MS, but by gel electrophoresis and by ion
exchange chromatography. Further experiments regarding
the nature of this side reaction are currently being
pursued.
21. Shabarova, Z.; Bogdanov, A. In Advanced Organic
Chemistry of Nucleic Acids; VCH: Weinheim, 1994; Vol.
1, p 400f.
References and notes
1. (a) von Kiedrowski, G.; Wlotzka, B.; Helbing, J.; Matzen,
M.; Jordan, S. Angew. Chem. 1991, 103, 456–459; (b) von
Kiedrowski, G.; Wlotzka, B.; Helbing, J. Angew. Chem.
1989, 101, 1259–1261; (c) Naylor, R.; Gilham, P. T.
Biochemistry 1966, 5, 2722–2728; (d) Sokolova, N. I.;
Ashirbekova, D. T.; Dolinnaya, N. G.; Shabarova, Z. A.
FEBS Lett. 1988, 232, 153–155.
22. Gritsenko, O. M.; Gromova, E. S. Russ. Chem. Rev. 1999,
68, 241–251.