C O M M U N I C A T I O N S
Table 2. Scope of the Enantioselective Monofluoromethylationa
presumably due to the steric bulk of the tert-butyl group (entry
11). The substituents on the aryl groups, furanyl, and alkyl chains
were well tolerated, and the enantiomeric excesses of the starting
R-fluorobisphenylsulfonyl amines 3a-k were nearly maintained
during the desulfonylation reaction. The desulfonylation of 3 was
2 4
also possible using Na(Hg)/Na HPO in MeOH to give 4 (entry 12).
yield
(%)
ee
entry
2
R
3
(%)
In conclusion, we have described the first catalytic enantiose-
lective fluorobisphenylsulfonylmethylation of in situ generated
imines from R-amido sulfones under the combination of Mannich-
1
2
2a
2b
2c
2d
2e
2f
2g
2h
2i
Ph
3a
3b
3c
3d
3e
3f
3g
3h
3i
92
98
94
88
96
81
85
95
80
93
70
96
b
c
m-Cl-C6H4
p-Cl-C6H4
p-MeO-C6H4
2-naphthyl
2-furyl
PhCH2CH2
Me(CH2)6
c-C6H11
97
87
95
90
93
90
95
98
99
96
c
c
c
d
d
d
d
d
d
9
3
4
5
6
7
8
type conditions with FBSM chemistry. The R-fluorobisphenylsul-
fonylmethylated amines were converted to R-monofluoromethyl
amines by reductive desulfonylation. Application to the synthesis
of biologically important molecules is currently under investigation
via the FBSM/Mannich strategy.
e
9
1
1
0
1
2j
2k
i-Pr
t-Bu
3j
3k
Acknowledgment. Support was provided by JSPS KAKENHI
(19390029, 17590087) and by Japan Science & Technology (JST).
e
a
All of the reaction was performed on 0.35 mmol scale of 2. b 10 mol
Supporting Information Available: Experimental procedures and
spectral data for all compounds. This material is available free of charge
via the Internet at http://pubs.acs.org.
c
%
of catalyst was used. The absolute stereochemistry was tentatively
determined by comparing the optical rotation with that of 3a. The
stereochemistry was not determined. The reaction was carried out at
d
e
-
40 °C.
References
(
1) (a) Enantiocontrolled Synthesis of Fluoroorganic Compounds: Stereo-
chemical Challenges and Biomedical Targets; Soloshonok, V. A., Ed.;
Wiley-VCH: Chichester, UK, 1999. (b) Modern Fluoroorganic Chemistry;
Kirsch, P., Ed.; Wiley-VCH: Weinheim, Germany, 2004.
Table 3. Reductive Desulfonylation of 3
(
2) (a) Ibrahim, H.; Togni, A. Chem. Commun. 2004, 1147-1155. (b) Ma,
J.-A.; Cahard, D. Chem. ReV. 2004, 104, 6119-6146. (c) Prakash, G. K.
S.; Yudin, A. K. Chem. ReV. 1997, 97, 757-786. (d) Umemoto, T. Chem.
ReV. 1996, 96, 1757-1778. (e) Hamashima, Y.; Sodeoka, M. Synlett 2006,
1467-1478. (f) Shibata, N. Yuki Gosei Kagaku Kyokaishi 2006, 64, 14-
24. (g) Shibata, N.; Ishimaru, T.; Nakamura, S.; Toru, T. J. Fluorine Chem.
In press.
yield
(%)
ee
entry
3 (ee)
reagent
4
(%)
1
2
3
4
5
6
7
8
9
3a (96)
3b (97)
3c (87)
3d (95)
3e (90)
3f (93)
3g (90)
3h (95)
3i (98)
3j (99)
3k (96)
3a (92)
Mg
Mg
Mg
Mg
Mg
Mg
Mg
Mg
Mg
Mg
Mg
4a
4b
4c
4d
4e
4f
4g
4h
4i
84
95a
(3) (a) Iseki, K.; Nagai, T.; Kobayashi, Y. Tetrahedron Lett. 1994, 35, 3137-
3138. (b) Hagiwara, T.; Kobayashi, T.; Fuchikami, T. Main Group Chem.
1997, 2, 13-15. (c) Roussel, S.; Billard, T.; Langlois, B. R.; Saint-James,
L. Chem.sEur. J. 2005, 11, 939-944.
b
82
88
80
85
81
87
83
87
75
96
b
b
b
c
c
c
c
c
c
a
83
93
89
92
90
96
98
99
96
92
(4) (a) Prakash, G. K. S.; Mandal, M.; Olah, G. A. Angew. Chem., Int. Ed.
2
001, 40, 589-590. (b) Prakash, G. K. S.; Mandal, M.; Olah, G. A. Org.
Lett. 2001, 3, 2847-2850. (c) Prakash, G. K. S.; Mandal, M. J. Am. Chem.
Soc. 2002, 124, 6538-6539. (d) Li, Y.; Hu, J. Angew. Chem., Int. Ed.
2005, 44, 5882-5886. (e) Li, Y.; Ni, C.; Liu, J.; Zhang, L.; Zheng, J.;
Zhu, L.; Hu, J. Org. Lett. 2006, 8, 1693-1696.
(5) (a) Kollonitsch, J.; Patchett, A. A.; Marburg, S.; Maycock, A. L.; Perkins,
L. M.; Doldouras, G. A.; Duggan, D. E.; Aster, S. D. Nature 1978, 274,
1
1
1
0
1
2
4j
4k
4a
d
26 (74 )
92
9
06-908. (b) Grunewald, G. L.; Caldwell, T. M.; Li, Q.; Slavica, M.;
e
Na(Hg), Na2HPO4
Criscione, K. R.; Borchardt, R. T.; Wang, W. J. Med. Chem. 1999, 42,
3588-3601. (c) Silverman, R. B.; Nanavati, S. M. J. Med. Chem. 1990,
a
33, 931-936. (d) Bey, P.; Gerhart, F.; Dorsselaer, V. V.; Danzin, C. J.
Med. Chem. 1983, 26, 1551-1556. (e) Grunewald, G. L.; Seim, M. R.;
Regier, R. C.; Martin, J. L.; Gee, L.; Drinkwater, N.; Criscione, K. R. J.
Med. Chem. 2006, 49, 5424-5433.
The absolute configuration of 4a was determined to be S after chemical
b
derivatization (see Supporting Information). The absolute stereochemistry
was tentatively determined by comparing the optical rotation with that of
a. The absolute stereochemistry was not determined. Based on the
c
d
4
(
6) (a) Fukuzumi, T.; Shibata, N.; Sugiura, M.; Yasui, H.; Nakamura, S.; Toru,
T. Angew. Chem., Int. Ed. 2006, 45, 4973-4977. (b) Shibata, N.; Kohno,
J.; Takai, K.; Ishimaru, T.; Nakamura, S.; Toru, T.; Kanemasa, S. Angew.
Chem., Int. Ed. 2005, 44, 4204-4207. (c) Shibata, N.; Suzuki, E.;
Takeuchi, Y. J. Am. Chem. Soc. 2000, 122, 10728-10729. (d) Shibata,
N.; Suzuki, E.; Asahi, T.; Shiro, M. J. Am. Chem. Soc. 2001, 123, 7001-
e
recovered starting material. Performed at -20 to -10 °C.
reaction of 1 with a broad range of aryl R-amido sulfones 2a-f,
including a heteroaryl group, and functional groups such as chloro
and methoxy were tolerated in the reaction. The desired products
7009. (e) Ishimaru, T.; Shibata, N.; Nagai, J.; Nakamura, S.; Toru, T.;
Kanemasa, S. J. Am. Chem. Soc. 2006, 128, 16488-16489. (f) Shibata,
N.; Matsunaga, M.; Nakagawa, M.; Fukuzumi, T.; Nakamura, S.; Toru,
T. J. Am. Chem. Soc. 2005, 127, 5271-5272.
3a-f were obtained in high yields with up to 97% ee (entries 1-6).
It should be mentioned that alkyl R-amido sulfones 2g-j that have
enolizable protons also gave good reactivities and enantioselec-
tivities: the corresponding N-Boc R-fluorobisphenylsulfonyl amines
(
7) (a) Fini, F.; Bernardi, L.; Herrera, R. P.; Pettersen, D.; Ricci, A.; Sgarzania,
V. AdV. Synth. Catal. 2006, 348, 2043-2046. (b) Fini, F.; Sgarzani, V.;
Pettersen, D.; Herrera, R. P.; Bernardi, L.; Ricci, A. Angew. Chem., Int.
Ed. 2005, 44, 7975-7978. (c) Palomo, C.; Oiarbide, M.; Laso, A.; Lopez,
R. J. Am. Chem. Soc. 2005, 127, 17622-17623. (d) Herrera, R. P.;
Sgarzani, V.; Bernardi, L.; Fini, F.; Pettersen, D.; Ricci, A. J. Org. Chem.
3g-j were produced in high yields with excellent enantioselec-
tivities of 90-99% (entries 7-10). High enantioselectivity was also
achieved with a sterically hindered R-amido sulfone 2k (96% ee,
entry 11).
2
006, 71, 9869-9872. (e) Song, J.; Shih, H. W.; Deng, L. Org. Lett. 2007,
9
, 603-606.
(8) (a) Okada, A.; Shibuguchi, T.; Ohshima, T.; Masu, H.; Yamaguchi, K.;
Shibasaki, M. Angew. Chem., Int. Ed. 2005, 44, 4564-4567. (b) Ooi, T.;
Kameda, M.; Fujii, J.; Maruoka, K. Org. Lett. 2004, 6, 2397-2399. (c)
Marques, M. M. B. Angew. Chem., Int. Ed. 2006, 45, 348-352. (d)
Shibasaki, M.; Matsunaga, S. J. Organomet. Chem. 2006, 691, 2089-
With a range of enantiomerically enriched N-Boc R-fluoro-
bisphenylsulfonyl amines 3 in hand, we were now in a position to
investigate the reductive desulfonylation of 3 to complete the
sequence of enantioselective monofluoromethylation. A simple one-
step removal of the two phenylsulfonyl groups from 3a-k was
affected under Mg/MeOH conditions to afford the corresponding
monofluoromethylated amines 4a-k in high yields (Table 3). The
desulfonylation of 3k gave only incomplete conversion, which is
2
100. (e) C o´ rdova, A. Acc. Chem. Res. 2004, 37, 102-112. (f) Maruoka,
K.; Ooi, T. Chem. ReV. 2003, 103, 3013-3028. (g) Petrini, M. Chem.
ReV. 2005, 105, 3949-3977.
(9) The reaction of 2a using 1-fluoro(phenylsulfonyl)methane (CH
2 2
FSO Ph)
in place of FBSM (1) under the same condition did not give the
corresponding product. More basic conditions might be needed.
JA071509Y
J. AM. CHEM. SOC.
9
VOL. 129, NO. 20, 2007 6395