Journal of the American Chemical Society
Page 4 of 5
12, 3147–3150. (e) Pace, V.; Holzer, W.; Olofsson, B. Adv. Synth. Catal.
1574−1576. Dixon and our group independently developed nucleophilic ad-
2014, 356, 3697–3736.
dition to amide carbonyls by taking advantage of Nagashima’s conditions,
see Ref 3p and 4d. For selected examples on hydrosilylation of amides to
give enamines or imines, see: (b) Bower, S.; Kreutzer, K. A.; Buchwald, S.
L. Angew. Chem. Int. Ed. Engl. 1996, 35, 1515–1516. (c) Cheng, C.;
Brookhart, M. J. Am. Chem. Soc. 2012, 134, 11304–11307. (d) Volkov, A.;
Tinnis, F.; Adolfsson, H. Org. Lett. 2014, 16, 680–683. (e) Tinnis, F.;
Volkov, A.; Slagbrand, T.; Adolfsson, H. Angew. Chem. Int. Ed. 2016, 55,
4562–4566. For a complete list of references, see the supporting infor-
mation.
(10) (a) Mitsui, H.; Zenki, S.; Shiota, T.; Murahashi, S. J. Chem. Soc.,
Chem. Commun. 1984, 874–875. (b) Murahashi, S.; Shiota, T. Tetrahedron
Lett. 1987, 28, 2383–2386. (c) Murahashi, S.; Oda, T.; Masui, Y. J. Am.
Chem. Soc. 1989, 111, 5002–5003. (d) Murahashi, S.; Mitsui, H.; Shiota,
T.; Tsuda, T.; Watanabe, S. J. Org. Chem. 1990, 55, 1736–1744. (e) Sakaue,
S.; Sakata, Y.; Nishiyama, Y.; Ishii, Y. Chem. Lett. 1992, 289–292. (f) Bal-
listreri, F. P.; Chiacchio, U.; Rescifina, A.; Tomaselli, G. A.; Toscano, R.
M. Tetrahedron 1992, 48, 8677–8684. (g) McCaig, A. E.; Wightman, R. H.
Tetrahedron Lett. 1993, 34, 3939–3942. (h) Joseph, R.; Sudalai, A.; Ravin-
dranathan, T. Synlett 1995, 1177–1178. (i) Marcantoni, E.; Petrini, M.; Po-
limanti, O. Tetrahedron Lett. 1995, 36, 3561–3562. (j) van den Broek, L.
A. G. M. Tetrahedron 1996, 52, 4467–4478. (k) Goti, A.; Nannelli, L. Tet-
rahedron Lett. 1996, 37, 6025–6028. (l) Murray, R. W.; Iyanar, K.; Chen,
J.; Wearing, J. T.; J. Org. Chem. 1996, 61, 8099–8102. (m) Yamazaki, S.
Bull. Chem. Soc. Jpn. 1997, 70, 877–883. (n) Forcato, M.; Nugent, W. A.;
Licini, G. Tetrahedron Lett. 2003, 44, 49–52. (o) Looper, R. E.; Williams,
R. M. Angew. Chem. Int. Ed. 2004, 43, 2930–2933. (p) Sánchez-Izquierdo,
F.; Blanco, P.; Busqué, F.; Alibés, R.; de March, P.; Figueredo, M.; Font,
J.; Parella, T. Org. Lett. 2007, 9, 1769–1772. (q) Abrantes, M.; Gonҫalves,
I. S.; Pillinger, M.; Vurchio, C.; Cordero, F. M.; Brandi, A. Tetrahedron
Lett. 2011, 52, 7079–7082.
1
2
3
4
5
6
7
8
(3) For recent selected examples on nucleophilic addition to amides, see:
(a) Xia, Q.; Ganem, B. Org. Lett. 2001, 3, 485–487. (b) Wiedemann, S.;
Marek, I.; de Meijere, A. Synlett 2002, 879–882. (c) Suh, Y.-G.; Shin, D.-
Y.; Jung, J.-K.; Kim, S.-H. Chem. Commun. 2002, 1064–1065. (d) Murai,
T.; Mutoh, Y.; Ohta, Y.; Murakami, M. J. Am. Chem. Soc. 2004, 126, 5968–
5969. (e) Xiao, K.-J.; Luo, J.-M.; Ye, K.-Y.; Wang, Y.; Huang, P.-Q. An-
gew. Chem. Int. Ed. 2010, 49, 3037–3040. (f) Bélanger, G.; O’Brien, G.;
Larouche-Gauthier, R. Org. Lett. 2011, 13, 4268–4271. (g) Bechara, W. S.;
Pelletier, G.; Charette, A. B. Nature Chem. 2012, 4, 228–234. (h) Xiao, K.-
J.; Wang, A.-E.; Huang, Y.-H.; Huang, P.-Q. Asian J. Org. Chem. 2012, 1,
130–132. (i) Oda, Y.; Sato, T.; Chida, N. Org. Lett. 2012, 14, 950–953. (j)
Medley, J. W.; Movassaghi, M. Angew. Chem. Int. Ed. 2012, 51, 4572–
4576. (k) Xiao, K.-J.; Wang, A.-E.; Huang, P.-Q. Angew. Chem. Int. Ed.
2012, 51, 8314–8317. (l) Inamoto, Y.; Kaga, Y.; Nishimoto, Y.; Yasuda,
M.; Baba, A. Org. Lett. 2013, 15, 3452–3455. (m) Xiao, K.-J.; Luo, J.-M.;
Xia, X.-E.; Wang, Y.; Huang, P.-Q. Chem. Eur. J. 2013, 19, 13075–13086.
(n) Xiao, K.-J.; Wang, Y.; Huang, Y.-H.; Wang, X.-G.; Huang, P.-Q. J.
Org. Chem. 2013, 78, 8305–8311. (o) Huang, P.-Q.; Ou W.; Xiao, K.-J,
Chem. Commun. 2014, 50, 8761–8763. (p) Gregory, A. W.; Chambers, A.;
Hawkins, P. Jakubec, A.; Dixon D. J. Chem. Eur. J. 2015, 21, 111–114. (q)
Huang, P.-Q.; Lang, Q.-W.; Wang, A.-E.; Zheng, J.-F. Chem. Commun.
2015, 51, 1096–1099. (r) Huang, P.-Q.; Huang, Y.-H.; Xiao, K.-J.; Wang,
Y.; Xia, X.-E. J. Org. Chem. 2015, 80, 2861–2868. (s) Szcześniak, P.; Ma-
ziarz, E.; Stecko, S.; Furman, B. J. Org. Chem. 2015, 80, 3621–3633. For a
complete list of references, see the supporting information.
(4) We reported nucleophilic addition to N-alkoxyamides, see: (a) Shiro-
kane, K.; Kurosaki, Y.; Sato, T.; Chida, N. Angew. Chem. Int. Ed. 2010, 49,
6369–6372. (b) Shirokane, K.; Wada, T.; Yoritate, M.; Minamikawa, R.;
Sato, T.; Chida, N. Chem. Eur. J. 2014, 20, 17565–17571. (c) Nakajima,
M.; Sato, T.; Chida, N. Org. Lett. 2015, 17, 1696–1699. For selected exam-
ples from other groups, see: (d) Iida, H.; Watanabe, Y.; Kibayashi, C. J. Am.
Chem. Soc. 1985, 107, 5534–5535. (e) Vincent, G.; Guillot, R.; Kouklov-
sky, C. Angew. Chem. Int. Ed. 2011, 50, 1350–1353. (f) Jäkel, M.; Qu, J.;
Schnitzer, T.; Helmchen, G. Chem. Eur. J. 2013, 19, 16746–16755. For a
complete list of references, see the supporting information.
(5) A preliminary experiment using N-hydroxyamide 1a and the Schwartz
reagent did not provide any desired product 4a. However, we discovered
that exposure of the corresponding N-siloxyamide i to the Schwartz reagent,
followed by addition of TFA (trifluoroacetic acid) led to the formation of
nitrone 4a in 94% yield. These results indicated that the reduction of N-
hydroxyamides requires temporarily masking silyl groups.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(11) For a pioneering work on synthesis and reactions of acyclic -
alkoxynitrones from N-hydroxyamides, see: Warshaw, J. A.; Gallis, D. E.;
Acken, B. J.; Gonzalez, O. J.; Crist, D. R. J. Org. Chem. 1989, 54, 1736–
1743.
(12) For selected examples, see: (a) Oppolzer, W.; Tamura, O.; Deerberg,
J.; Helv. Chim. Acta 1992, 75, 1965–1978. (b) Higo, T.; Ukegawa, T.; Yo-
koshima, S.; Fukuyama, T. Angew. Chem. Int. Ed. 2015, 54, 7367–7370.
(13) Murahashi reported synthesis of -substituted cyclic nitrones through
decarboxylative oxidation of N-alkyl--amino acids, see: (a) Murahashi, S.;
Imada, Y.; Ohtake, H. J. Org. Chem. 1994, 59, 6170–6172. (b) Ohtake, H.;
Imada, Y.; Murahashi, S. Bull. Chem. Soc. Jpn. 1999, 72, 2737–2754.
(14) Strukul reported synthesis of -substituted cyclic nitrones through
Pt(II)-catalyzed oxidation of secondary amines, see: Colladon, M.; Scarso,
A.; Strukul, G. Green Chem. 2008, 10, 793–798.
(15) (a) Sakai, R.; Higa, T.; Jefford, C. W.; Bernardinelli, G. J. Am. Chem.
Soc. 1986, 108, 6404–6405. (b) Nakamura, H.; Deng, S.; Kobayashi, J.;
Ohizumi, Y.; Tomotake, Y.; Matsuzaki, T.; Hirata, Y. Tetrahedron Lett.
1987, 28, 621–624.
(16) (a) Rogers, M. A. T. Nature 1956, 177, 128–129. (b) Alford, E. J.; Hall,
J. A.; Rogers, M. A. T. J. Chem. Soc. (C), 1966, 1103–1107. (c) Brown, C.
J. J. Chem. Soc. (C), 1966, 1108–1112. (d) Al-Jaroudi, S. S.; Perzanowski,
H. P.; Wazeer, M. I. M.; Ali, S. A. Tetrahedron 1997, 53, 5581–5592. (e)
Imada, Y.; Okita, C.; Maeda, H.; Kishimoto, M.; Sugano, Y.; Kaneshiro,
H.; Nishida, Y.; Kawamorita, S.; Komiya, N.; Naota, T. Eur. J. Org. Chem.
2014, 5670–5674.
(6) For examples on iridium-catalyzed dehydrosilylation, see: (a) Black-
burn, S. N.; Haszeldine, R. N.; Parish, R. V.; Setchfield, J. H. J. Organomet.
Chem. 1980, 192, 329–338. (b) Dwyer, J.; Hilal, H. S.; Parish, R. V. J. Or-
ganomet. Chem. 1982, 228, 191–201. (c) Luo, X.-L.; Crabtree, R. H. J. Am.
Chem. Soc. 1989, 111, 2527–2535. (d) Field, L. D.; Messerle, B. A.; Rehr,
M.; Soler, L. P.; Hambley, T. W. Organometallics 2003, 22, 2387–2395.
(e) Chung, M.-K.; Schlaf, M. J. Am. Chem. Soc. 2005, 127, 18085–18092.
(f) Ojima, Y.; Yamaguchi, K.; Mizuno, N. Adv. Synth. Catal. 2009, 351,
1405–1411.
(7) For recent selected reviews on iridium-catalyzed reactions, see: (a)
Ketcham, J. M.; Shin, I.; Montgomery, T. P.; Krische, M. J. Angew. Chem.
Int. Ed. 2014, 53, 9142–9150. (b) Bartoszewicz, A.; Ahlsten, N.; Martín-
Matute, B.; Chem. Eur. J. 2013, 19, 7274–7302. (c) Pan, S.; Shibata, T. ACS
catal. 2013, 3, 704–712. (d) Hartwig, J. F. Chem. Soc. Rev. 2011, 40, 1992–
2002. (e) Choi, J.; MacArthur, A. H. R.; Brookhart, M.; Goldman, A. S.
Chem. Rev. 2011, 111, 1761–1779. (f) Hartwig, J. F.; Stanley, L. M. Ac-
counts Chem. Res. 2010, 43, 1461–1475. (g) Han, S. B.; Kim, I. S.; Krische,
M. J. Chem. Commun. 2009, 7278–7287.
(17) (a) Shiina, I.; Kubota, M.; Ibuka, R. Tetrahedron Lett. 2002, 43, 7535–
7539. (b) Shiina, I.; Kubota, M.; Oshiumi, H.; Hashizume, M. J. Org. Chem.
2004, 69, 1822–1830.
(18) The macrolactamization required the protection of the N-hydroxy
group as a TBS ether.
(8) Curtis reported synthesis of siloxane oligomer using (Me2HSi)2O and a
catalytic amount of the Vaska complex [IrCl(CO)(PPh3)2], see: Greene, J.;
Curtis, M. D. J. Am. Chem. Soc. 1977, 99, 5176–5177.
(9) Nagashima reported a pioneering work using iridium-catalyzed hydros-
ilylation of tertiary amides to give enamines, see: (a) Motoyama, Y.; Aoki,
M.; Takaoka, N.; Aoto, R.; Nagashima, H. Chem. Commun. 2009,
4
ACS Paragon Plus Environment