M. Frezza et al. / Tetrahedron Letters 46 (2005) 6495–6498
OH
OH
6497
O
O
O
a
b
+
2a
RCOO
RCOO
RCOO
O
9
9
a
b
10a (87%)
10b (89%)
11a
11b
a R = CH3
b R = tert-Bu
Scheme 5. Synthetic sequence to compounds 11. Reagents and conditions: (a) THF, DABCO (0.25 equiv), 0 °C, 20 h. (b) O
DMS, À78 °C to rt.
3
, MeOH, À78 °C, then
Acknowledgements
(1 mL) was added and the resulting solution was concen-
trated under vacuum to a residual volume of about 1 mL.
1
1
6. H NMR (500 MHz, D
2
O). 5a (20%) + 6 (40%) + 7 (40%).
Financial support from MENESR and CNRS is grate-
fully acknowledged. M.F. thanks the MENESR for a
scholarship.
d 4.35 (dd, J = 6.9, J = 5.7 Hz, H-4), 4.16 (m, 2H, H-5,
H-8), 4.03 (dd, J = 6.0, J = 3.5 Hz, H-7), 3.95 (dd, J = 7.4,
J = 3.5 Hz, H-1), 3.80 (m, 2H, H-3, H-9), 3.63 (dd,
J = 11.9, J = 7.4 Hz, H-2) 3.56 (dd, J = 9.4, J = 5.7 Hz,
H-6), 2.35 (s, CH ), 1.42 (s, CH ), 1.39 (s, CH ).
3
3
3
References and notes
Assignments are based on published data and 2D-COSY
experiments.
1
1
2
. For a recent review, see: Lyon, G. J.; Muir, T. W. Chem.
Biol. 2003, 10, 1007–1021.
. Finch, R. G.; Pritchard, D. I.; Bycroft, B. W.; Williams,
P.; Stewart, G. S. J. Antimicrob. Chemother. 1998, 42, 569–
17. H NMR (300 MHz, D
2
O). 8a d 8.04 (m, 1H), 7.92 (m,
1H), 7.80 (m, 2H), 5.30 (dd, J = 6.7, J = 4.5 Hz, 1H), 3.99
(dd, J = 12, J = 4.5 Hz 1H), 3.90 (dd, J = 12, J = 6.7 Hz,
1H), 2.77 (s, 3H) in agreement with published data.
1
5
71.
18. Minor signals were observed in the H NMR spectra of
3
. Rice, S. A.; McDougald, D.; Kumar, N.; Kjelleberg, S.
Curr. Opin. Investig. Drugs 2005, 6, 178–184.
. Raffa, R. B.; Iannnuzzo, J. R.; Levine, D. R.; Saeid, K. K.;
Schwartz, R. S. C.; Sucic, N. T.; Terleckyj, O. D.;
Young, J. M. J. Pharmacol. Exp. Ther. 2005, 312, 417–
DPD (three singulets in the 2.0–2.2 ppm area and a
multiplet at 3.95 ppm) and of 8a (multiplet at 7.49 and
7.70 ppm).
4
19. The anti stereochemistry was temporarily assigned to the
major isomer by analogy with the results reported in the
literature for Baylis–Hillman reactions between a-alkoxy-
aldehydes and vinyl ketones or esters: Drewes, S. E.;
Manickum, T.; Roos, G. H. P. Synth. Commun. 1988, 18,
1065–1070.
4
23.
5
6
7
. Chen, X.; Schauder, S.; Potier, N.; Van Dorsselaer, A.;
Pelczer, I.; Bassler, B. L.; Hughson, F. M. Nature 2002,
4
15, 545–549.
. Reverchon, S.; Chantegrel, B.; Deshayes, C.; Doutheau,
20. In these cases, compounds 4c are in equilibrium with small
amounts (25% for 4c anti, 5% for 4c syn) of isomeric cyclic
A.; Cotte-Pattat, N. Bioorg. Med. Chem. Lett. 2002, 12,
1
153–1157.
anomers.
1
. Castang, S.; Chantegrel, B.; Deshayes, C.; Dolmazon, R.;
Gouet, P.; Haser, R.; Reverchon, S.; Nasser, W.; Hug-
ouvieux-Cotte-Pattat, N.; Doutheau, A. Bioorg. Med.
Chem. Lett. 2004, 14, 5145–5149.
21. H NMR (500 MHz, D
2
O). 5b d 4.38 (dd, J = 7.3,
J = 6.0 Hz, 1H), 4.16 (dd, J = 10.1, J = 6.0 Hz, 1H),
4.15 (dd, J = 9.5, J = 7.3 Hz, 1H), 4.02 (dd, J = 6.0,
J = 3.2 Hz, 1H), 3.94 (dd, J = 7.3, J = 4.0 Hz, 1H), 3.79
(dd, J = 10.1, J = 3.2 Hz, 1H), 3.77 (dd, J = 12.0,
J = 4.0 Hz, 1H), 3.62 (dd, J = 12.0, J = 7.3 Hz, 1H),
3.53 (dd, J = 9.5, J = 6.0 Hz, 1H) 2.77 (m, 2H), 1.75 (m,
4H), 1.03 (t, J = 7.1 Hz, 3H), 0.98 (t, J = 7.5 Hz, 3H), 0.97
8
. Hoffman, T.; Schieberle, P. J. Agric. Food Chem. 1998, 46,
2
35–241.
9
. Meijler, M. M.; Hom, L. G.; Kaufmann, G. F.; McKen-
zye, K. M.; Sun, C.; Moss, J. A.; Matsushita, M.; Janda,
K. D. Angew. Chem., Int. Ed. 2004, 43, 2106–2108.
2
(t, J = 7.5 Hz, 3H). (300 MHz, D O) 5c anti d 3.97 (m,
1
1
1
0. Semmelhack, M. F.; Campagna, S. R.; Federle, M. J.;
Bassler, B. L. Org. Lett. 2005, 7, 569–572.
1. Matsui, K.; Takizawa, S.; Sasai, H. Tetrahedron Lett.
1H), 3.93 (d, J = 7.9 Hz, 1H), 3.76 (m, 1H), 3.56 (d,
J = 6.0 Hz, 1H), 1.40 (s, 3H), 1.39 (s, 3H), 1.31 (d,
J = 6.4 Hz, 3H), 1.29 (d, J = 6.4 Hz, 3H). 5c syn d 4.37 (m,
1H), 4.30 (m, 1H), 4.05 (d, J = 5.3 Hz, 1H), 3.86 (d,
J = 4.5 Hz, 1H), 1.41 (s, 3H), 1.36 (s, 3H), 1.24 (d,
2
005, 46, 1943–1946, and references cited therein.
2. De Keersmaecker, S. C. J.; Varszegi, C.; van Boxel, N.;
Habel, L. W.; Metzger, K.; Daniels, R.; Marchal, K.; De
Vos, D.; Vanderleyden, J. J. Biol. Chem. 2005, 280, 19563–
J = 6.8 Hz, 3H), 1.15 (d, J = 6.8 Hz, 3H).
1
22. H NMR (300 MHz, D
2
O). 8b d 8.06 (m, 1H), 7.98 (m,
1
9568.
3. Brzezinski, L. J.; Rafel, S.; Leahy, J. W. Tetrahedron 1997,
3, 16423–16434.
1H), 7.83 (m, 2H), 5.33 (dd, J = 6.8, J = 4.9 Hz, 1H), 3.99
(dd, J = 11.7, J = 4.9 Hz, 1H), 3.93 (dd, J = 11.7,
J = 6.8 Hz, 1H), 3.11 (m, 2H), 1.36 (t, J = 7.5 Hz, 3H).
8c anti d 8.10 (m, 1H), 7.98 (m, 1H), 7.83 (m, 2H), 5.06 (d,
J = 6.8 Hz, 1H), 4.26 (m, 1H), 2.81 (s, 3H), 1.33 (d,
J = 6.4 Hz, 3H). 8c syn d 8.05 (m, 1H), 7.95 (m, 1H), 7.83
(m, 2H), 5.04 (d, J = 5.7 Hz, 1H), 4.32 (m, 1H), 2.78 (s,
3H), 1.19 (d, J = 6.4 Hz, 3H).
1
1
5
4. Nicolaou, K. C.; Liu, J.-J.; Yang, Z.; Ueno, H.; Sorensen,
E. J.; Claiborne, C. F.; Guy, R. K.; Hwang, C.-K.;
Nakada, M.; Nantermet, P. G. J. Am. Chem. Soc. 1995,
1
17, 634–644.
1
5. A solution of 4a (8 mg, 62 lmol) in CD OD (6 mL) was
3
cooled to À78 °C and ozone was bubbled through the
solution. The reaction mixture first turned light yellow and
after about 30 min, became light green. At this time, the
solution was purged with oxygen until the green colour
23. The aldehydes 1b and 1c were prepared by the reductive
ozonolysis of known tert-butyldimethylsilyl protected
3-buten-2-ol and 2-methyl-3-buten-2-ol, respectively.
24. The starting aldehyde 1c was recovered unchanged after
30 h of stirring at 0 °C. This failure was probably due to
the sterically hindered carbonyl function of the neopen-
tylic type aldehyde 1c.
disappeared and Me S (45 lL, 10 equiv) was added. The
2
mixture was then allowed to warm at rt and stirred for
1
2
6 h. To 1 mL of the colourless reaction mixture, D O