Please do not adjust margins
ChemComm
Page 4 of 6
COMMUNICATION
Journal Name
2013, 42, 2423–36.
J. Schneider, H. Jia, J. T. Muckerman and E. Fujita, Chem.
Soc. Rev., 2012, 41, 2036.
J. Hawecker, J. Lehn and R. Ziessel, Helv. Chim. Acta, 1986,
69, 1990–2012.
DOI: 10.1039/C9CC03943K
h
TEOA
5
CO
N
CO
Re
N
N
CO
N
CO
N
Re
N
OR
6
N
N
e-
1+
7
J. Hawecker, J.-M. Lehn and R. Ziessel, J. Chem. Soc. Chem.
Commun., 1984, 984, 328.
A
H+ + e-
CO
HCOOH
CO
H2
8
P. L. Cheung, C. W. Machan, A. Y. S. Malkhasian, J. Agarwal
and C. P. Kubiak, Inorg. Chem., 2016, 55, 3192–3198.
J. X. Zhang, C. Y. Hu, W. Wang, H. Wang and Z. Y. Bian,
Appl. Catal. A Gen., 2016, 522, 145–151.
H. Fei, M. D. Sampson, Y. Lee, C. P. Kubiak and S. M. Cohen,
Inorg. Chem., 2015, 54, 6821–6828.
CO
H
H
O
CH
9
H
O
N
N
N
N
CO
N
CO
N
Re
Re
10
11
12
13
14
N
N
CO2
J. Rohacova and O. Ishitani, Chem. Sci., 2016, 7, 6728–
6739.
ReH
Re(form)
S. Meister, R. O. Reithmeier, M. Tschurl, U. Heiz and B.
Rieger, ChemCatChem, 2015, 7, 690–697.
M. Bourrez, F. Molton, S. Chardon-Noblat and A. Deronzier,
Angew. Chem. Int. Ed. Engl., 2011, 50, 9903–9906.
M. Bourrez, M. Orio, F. Molton, H. Vezin, C. Duboc, A.
Deronzier and S. Chardon-Noblat, Angew. Chemie - Int. Ed.,
2014, 53, 240–243.
H. Takeda, H. Koizumi, K. Okamoto and O. Ishitani, Chem.
Commun., 2014, 50, 1491–3.
M. D. Sampson and C. P. Kubiak, J. Am. Chem. Soc., 2016,
138, 1386–1393.
S. K. Lee, M. Kondo, M. Okamura, T. Enomoto, G.
Nakamura and S. Masaoka, J. Am. Chem. Soc., 2018, 140,
16899–16903.
J. Hawecker, J. Lehn and R. Ziessel, J. Chem. Soc. Chem.
Commun., 1983, 536–538.
H. Takeda, K. Koike, H. Inoue and O. Ishitani, J. Am. Chem.
Soc., 2008, 130, 2023–2031.
P. Kurz, B. Probst, B. Spingler and R. Alberto, Eur. J. Inorg.
Chem., 2006, 2006, 2966–2974.
H. Rao, J. Bonin and M. Robert, Chem. Commun., 2017, 53,
2830–2833.
J. Bonin, M. Chaussemier, M. Robert and M. Routier,
ChemCatChem, 2014, 6, 3200–3207.
D. Behar, T. Dhanasekaran, P. Neta, C. M. Hosten, D. Ejeh,
P. Hambright and E. Fujita, J. Phys. Chem. A, 1998, 102,
2870–2877.
S. Sato, T. Morikawa, T. Kajino and O. Ishitani, Angew.
Chemie - Int. Ed., 2013, 52, 988–992.
Y. J. Yuan, Z. T. Yu, X. Y. Chen, J. Y. Zhang and Z. G. Zou,
Chem. - A Eur. J., 2011, 17, 12891–12895.
A. J. Huckaba, E. A. Sharpe and J. H. Delcamp, Inorg. Chem.,
2016, 55, 682–690.
A. Maurin, C. Ng, L. Chen, T. Lau, M. Robert and C. Ko,
Dalton Trans., 2016, 45, 14524–14529.
Y. Kuramochi, J. Itabashi, K. Fukaya, A. Enomoto, M.
Yoshida and H. Ishida, Chem. Sci., 2015, 6, 3063–3074.
K. Sekizawa, K. Maeda, K. Domen, K. Koike and O. Ishitani,
J. Am. Chem. Soc., 2013, 135, 4596–4599.
Y. Kuramochi, O. Ishitani and H. Ishida, Coord. Chem. Rev.,
2018, 373, 333–356.
Figure 3. Proposed mechanism for the photocatalytic reduction of CO2 using 1+. The
initial reduction step for 1+ to A is presented in more detail in Figure S20.
The hydride intermediate [Re(bpy)2(CO)H](ReH) (Figure S16-18)
may be generated by addition of a proton and a second electron
to A. The protonation of the hydride intermediate (ReH),
provides an alternate catalytic cycle, bypasses formic acid
production and rationalizes the experimental observation of H2
formation. This proposed mechanism is reminiscent of the
current mechanism invoked for conversion of CO2 using the
isoelectronic ruthenium (II) complex [Ru(bpy)2(CO)2]2+.30The
insertion of CO2 into the Re-H complex would yield the formate
complex Re(form). Closing the cycle with a proton transfer to
liberate formic acid and trapping of the Re complex by CO (or
solvent) regenerates a 1+ equivalent.
15
16
17
18
19
20
21
22
23
This report has revealed
a
functionally integrated
photosensitizer/catalyst, cis-[Re(bpy)2(CO)2]+OTf- (1+OTf-), for
the visible light photocatalytic reduction of CO2. Not only does
this complex possess a structure that is unprecedented among
Re(I) photoreduction catalysts, the selective formation of
formic acid is unique among this class of catalysts, which
uniformly yield CO as the reduction product. We further
established substantial improvements in performance
parameters and more broad application of the photocatalyst
when a PS is added. Our active goals are to expand on this class
of catalysts and interrogate the mechanism of this
transformation.
24
25
26
27
28
29
30
31
Conflicts of interest
“There are no conflicts to declare”.
Notes and references
1
2
3
4
K. Sordakis, C. Tang, L. K. Vogt, H. Junge, P. J. Dyson, M.
Beller and G. Laurenczy, Chem. Rev., 2018, 118, 372–433.
H. Zhong, M. Iguchi, M. Chatterjee, Y. Himeda, Q. Xu and H.
Kawanami, Adv. Sustain. Syst., 2018, 1700161, 1700161.
J. L. Inglis, B. J. MacLean, M. T. Pryce and J. G. Vos, Coord.
Chem. Rev., 2012, 256, 2571–2600.
H. Ishida, T. Terada, K. Tanaka and T. Tanaka, Inorg. Chem.,
C. Costentin, M. Robert and J.-M. Savéant, Chem. Soc. Rev.,
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins