Dalton Transactions
Communication
which are generally significantly constrained in the condensed 11 R. Heydová, E. Gindensperger, R. Romano, J. Sýkora,
phase (solution), the differences between the individual
A. Vlček, S. Záliš and C. Daniel, J. Phys. Chem. A, 2012, 116,
11319–11329.
12 S. E. Hightower, R. C. Corcoran and B. P. Sullivan, Inorg.
Chem., 2005, 44, 9601–9603.
species are more pronounced. For example, the overall ΔG for
the reaction is about 30 kcal mol−1
.
13 A. Kumar, S.-S. Sun and A. J. Lees, in Photophysics of
Organometallics, ed. A. J. Lees, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2009, vol. 29, pp. 37–71.
Conclusions
Photocatalytic hydrogen formation using the energy from the 14 S. Bolaño, J. Bravo, J. Castro, S. García-Fontán, M. C. Marín
sun may provide an alternative green energy source. In this
work, we have shown that rhenium hydrides can produce H2
and P. Rodríguez-Seoane, J. Organomet. Chem., 2005, 690,
4945–4958.
via photolysis and have further elucidated a working mecha- 15 L. A. Worl, R. Duesing, P. Chen, L. D. Ciana and
nism for this process. An alternative mechanism to the pro- T. J. Meyer, J. Chem. Soc., Dalton Trans., 1991, 848–858.
posed bridged monohydrogen Re–H–Re species would be a 16 J. Hawecker, J.-M. Lehn and R. Ziessel, J. Chem. Soc., Chem.
bridged dihydrogen complex (Re–H2–Re), which has been pos- Commun., 1983, 536–538.
tulated previously in both ruthenium and osmium 17 C. Pac, K. Ishii and S. Yanagida, Chem. Lett., 1989, 18, 765–
systems.38,39 However, modeling studies have indicated that an
768.
analogous bridged Re–H2–Re intermediate is of considerably 18 B. P. Sullivan and T. J. Meyer, Organometallics, 1986, 5,
higher energy than the Re–H–Re species proposed herein. 1500–1502.
Thus, we propose that the rhenium system reported follows a 19 B. P. Sullivan, J. Phys. Chem., 1989, 93, 24–26.
discreetly different mechanism.
20 I. Bruand-Cote and C. Daniel, Chem. – Eur. J., 2002, 8,
1361–1371.
21 M. Cattaneo, F. Fagalde, N. E. Katz, C. D. Borsarelli and
T. Parella, Eur. J. Inorg. Chem., 2007, 2007, 5323–5332.
22 Md. A. Masood, B. P. Sullivan and D. J. Hodgson, Inorg.
Chem., 1994, 33, 5360–5362.
Conflicts of interest
There are no conflicts to declare.
23 A. Messmer, H. Jacobsen and H. Berke, Chem. – Eur. J.,
1999, 5, 3341–3349.
24 G. Albertin, S. Antoniutti, S. Garcia-Fontán, R. Carballo and
F. Padoan, J. Chem. Soc., Dalton Trans., 1998, 2071–2082.
Acknowledgements
We thank the University of Wyoming School of Energy 25 R. N. Perutz and B. Procacci, Chem. Rev., 2016, 116, 8506–8544.
Resources for financial support of this work.
26 J. K. Hino, L. Della Ciana, W. J. Dressick and B. P. Sullivan,
Inorg. Chem., 1992, 31, 1072–1080.
27 D. H. Gibson and X. Yin, J. Am. Chem. Soc., 1998, 120,
11200–11201.
28 E. Fujita and J. T. Muckerman, Inorg. Chem., 2004, 43,
7636–7647.
Notes and references
1 N. S. Lewis, MRS Bull., 2007, 32, 808–820.
2 N. S. Lewis and D. G. Nocera, Proc. Natl. Acad. Sci. U. S. A., 29 J. Y.-C. Chen, A. A. Martí, N. J. Turro, K. Komatsu,
2006, 103, 15729–15735.
3 J. Hawecker, J.-M. Lehn and R. Ziessel, Helv. Chim. Acta,
2004, 69, 1990–2012.
4 Y. Hayashi, S. Kita, B. S. Brunschwig and E. Fujita, J. Am.
Chem. Soc., 2003, 125, 11976–11987.
Y. Murata and R. G. Lawler, J. Phys. Chem. B, 2010, 114,
14689–14695.
30 H.-H. Limbach, T. Pery, N. Rothermel, B. Chaudret,
T. Gutmann and G. Buntkowsky, Phys. Chem. Chem. Phys.,
2018, 20, 10697–10712.
5 O. Ishitani, M. W. George, T. Ibusuki, F. P. A. Johnson, 31 Ishitani’s work was performed at 313 nm rather than the
K. Koike, K. Nozaki, C. Pac, J. J. Turner and J. R. Westwell,
Inorg. Chem., 1994, 33, 4712–4717.
6 F. P. A. Johnson, M. W. George, F. Hartl and J. J. Turner,
Organometallics, 1996, 15, 3374–3387.
7 P. Kurz, B. Probst, B. Spingler and R. Alberto, Eur. J. Inorg.
Chem., 2006, 2006, 2966–2974.
8 S. Sato, T. Morimoto and O. Ishitani, Inorg. Chem., 2007,
46, 9051–9053.
longer MLCT excitation used in this work. However, we
have performed the reaction with 1e at 315 nm and
observed the usual loss of the hydride.
32 W. D. Jones and J. A. Maguire, J. Am. Chem. Soc., 1985, 107,
4544–4546.
33 C. Bianchini, A. Marchi, L. Marvelli, M. Peruzzini,
A. Romerosa, R. Rossi and A. Vacca, Organometallics, 1995,
14, 3203–3215.
9 B. Probst, M. Guttentag, A. Rodenberg, P. Hamm and 34 S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem.
R. Alberto, Inorg. Chem., 2011, 50, 3404–3412. Phys., 2010, 132, 154104.
10 K. Kalyanasundaram, J. Chem. Soc., Faraday Trans. 2, 1986, 35 F. Hartl, T. Mahabiersing, P. Le Floch, F. Mathey, L. Ricard,
82, 2401–2415.
P. Rosa and S. Záliš, Inorg. Chem., 2003, 42, 4442–4455.
This journal is © The Royal Society of Chemistry 2019
Dalton Trans., 2019, 48, 16148–16152 | 16151