therefore relatively unreactive aryl bromide, as our test
substrate. As shown in Scheme 2, we have found that, among
Table 1. Room-Temperature Sonogashira Couplings Catalyzed
by Pd(PhCN)2Cl2/P(t-Bu)3
Scheme 2
9
the five ligands that are illustrated, P(t-Bu)3 is uniquely
effective in accomplishing the palladium-catalyzed Sono-
gashira reaction at room temperaturestriarylphosphines, as
well as sterically demanding and electron-rich PCy3, furnish
essentially none of the desired coupling product.10 Additional
optimization experiments have revealed that replacement of
Pd(MeCN)2Cl2/NEt3 with Pd(PhCN)2Cl2/HN(i-Pr)2 leads to
a modest enhancement in reactivity.11
By use of these conditions, we can catalyze the Sono-
gashira coupling of a wide variety of aryl bromides and
(5) For pioneering studies, see the following references. (a) Carbonyla-
tion: Huser, M.; Youinou, M.-T.; Osborn, J. A. Angew. Chem., Int. Ed.
Engl. 1989, 28, 1386-1388. Ben-David, Y.; Portnoy, M.; Milstein, D. J.
Am. Chem. Soc. 1989, 111, 8742-8744. (b) Dechlorination: Ben-David,
Y.; Gozin, M.; Portnoy, M.; Milstein, D. J. Mol. Catal. 1992, 73, 173-
180.
(6) (a) Coupling of vinyl- or arylsilanes: Gouda, K.-i.; Hagiwara, E.;
Hatanaka, Y.; Hiyama, T. J. Org. Chem. 1996, 61, 7232-7233. (b) Amine
arylation: Reddy, N. P.; Tanaka, M. Tetrahedron Lett. 1997, 38, 4807-
4810. Nishiyama, M.;Yamamoto, T.; Koie, Y. Tetrahedron Lett. 1998, 39,
617-620. Hamann, B. C.; Hartwig, J. F. J. Am. Chem. Soc. 1998, 120,
7369-7370. Bei, X.; Guram, A. S.; Turner, H. W.; Weinberg, W. H.
Tetrahedron Lett. 1999, 40, 1237-1240. (c) Suzuki reaction: Shen, W.
Tetrahedron Lett. 1997, 38, 5575-5578. Firooznia, F.; Gude, C.; Chan,
K.; Satoh, Y. Tetrahedron Lett. 1998, 39, 3985-3988. Bei, X.; Crevier,
T.; Guram, A. S.; Jandeleit, B.; Powers, T. S.; Turner, H. W.; Uno, T.;
Weinberg, W. H. Tetrahedron Lett. 1999, 40, 3855-3858. (d) Heck
reaction: Shaughnessy, K. H.; Kim, P.; Hartwig, J. F. J. Am. Chem. Soc.
1999, 121, 2123-2132. (e) Ketone arylation: Kawatsura, M.; Hartwig, J.
F. J. Am. Chem. Soc. 1999, 121, 1473-1478. (f) Alkoxide arylation: Mann,
G.; Incarvito, C.; Rheingold, A. L.; Hartwig, J. F. J. Am. Chem. Soc. 1999,
121, 3224-3225. Watanabe, M.; Nishiyama, M.; Koie, Y. Tetrahedron Lett.
1999, 40, 8837-8840. (g) Amidocarbonylation: Kim, J. S.; Sen, A. J. Mol.
Catal. A 1999, 143, 197-201.
(7) (a) Suzuki reaction and amine arylation: Old, D. W.; Wolfe, J. P.;
Buchwald, S. L. J. Am. Chem. Soc. 1998, 120, 9722-9723. (b) Alkoxide
arylation: Aranyos, A.; Old, D. W.; Kiyomori, A.; Wolfe, J. P.; Sadighi, J.
P.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121, 4369-4378. (c) Ketone
arylation: Fox, J. M.; Huang, X.; Chieffi, A.; Buchwald, S. L. J. Am. Chem.
Soc. 2000, 122, 1360-1370.
(8) (a) Suzuki reaction: Littke, A. F.; Fu, G. C. Angew. Chem., Int. Ed.
1998, 37, 3387-3388. (b) Heck reaction: Littke, A. F.; Fu, G. C. J. Org.
Chem. 1999, 64, 10-11. (c) Stille reaction: Littke, A. F.; Fu, G. C. Angew.
Chem. Int. Ed. 1999, 38, 2411-2413.
(9) For a pioneering study of the use of P(t-Bu)3 in palladium-catalyzed
coupling reactions, see: Nishiyama, M.; Yamamoto, T.; Koie, Y. Tetra-
hedron Lett. 1998, 39, 617-620.
(10) Notes: (a) For the triarylphosphines and for PCy3, essentially no
reaction is observed even after 24 h at room temperature (e 5% yield). (b)
Preliminary experiments with recently reported biaryl dialkyl phosphines
indicate that catalysts derived from these ligands, while useful at ∼50 °C,
are inefficient at room temperature. The origins of these differences in
reactivity are being investigated in our laboratories.
(11) Notes: (a) Pd2(dba)3 provides a slightly less active catalyst. (b)
Toluene and THF may be used in place of dioxane. (c) Couplings proceed
extremely slowly in the absence of CuI.
terminal acetylenes at room temperature (Table 1).12 Thus,
bromobenzene reacts with an array of alkynes in good to
excellent yields (entries 1-3). As illustrated in entries 4-7,
less reactive 4-bromoanisole also couples with high ef-
(12) General procedure: Pd(PhCN)2Cl2 (11.5 mg, 0.030 mmol) and CuI
(3.8 mg, 0.020 mmol; stored under argon or nitrogen) are added to a dry,
4-mL septum-capped vial, which is then sparged with argon and charged
with dioxane (1.0 mL; Aldrich Sure/Seal anhydrous/99.8%). P(t-Bu)3 (250
µL of a 0.25 M solution in dioxane; 0.062 mmol; P(t-Bu)3 is sold by Strem
Chemicals in a Sure/Seal bottle as a 10 wt % solution in hexane), HN(i-
Pr)2 (170 µL, 1.20 mol; Aldrich Sure/Seal 99.5%), the aryl bromide (1.00
mmol), and the alkyne (1.20 mmol) are added via syringe to the stirred
reaction mixture. During the reaction, which is followed by TLC or by
GC, precipitation of [H2N(i-Pr)2]Br is observed. After the aryl bromide has
been consumed, the reaction mixture is diluted with EtOAc (5 mL), filtered
through a small pad of silica gel (with EtOAc rinsings), concentrated, and
purified by flash chromatography.
1730
Org. Lett., Vol. 2, No. 12, 2000