638
O. Kysilka et al. / Journal of Fluorine Chemistry 130 (2009) 629–639
From the metathesis of 190 mg (0.18 mmol) of fluoroimidazo-
lium triflate 3b and 169 mg (1.12 mmol) of NaI, 175 mg (97%) of
product9b was obtained according to the general procedure. 1H
From the metathesis of 174 mg (0.23 mmol) of fluoroimidazo-
lium triflate 3d and 159 mg (1.4 mmol) of NaI, 150 mg (87%) of
product 9d was obtained according to the general procedure. 1H
NMR(299.97 MHz, acetone-d6)d
5.96q, 2H, 3JH-F = 8.5 Hz(CF3-CH2);
NMR (299.97 MHz, acetone-d6)
d
6.00 m, 2H (CF2-CH2); 6.07 m, 2H
(CF–CH2); 8.22 m, 1H (CH CH); 8.29 m, 1H (CH CH); 10,60 s, 1H
6.03 m, 2H, (CF2-CH2); 8.20 m, 1H (CH CH); 8.21 m, 1H (CH CH);
10.78 m, 1H (N–CH N). 19F NMR (282.23 MHz, acetone-d6) À71.5 t,
6F, 3JF-H = 8 Hz (F9); À77.9 dm, 1F, 2JF-F = 150 Hz (F3aB); À78.2 dm,
1F, 2JF-F = 150 Hz (F3aA); À79.4 q, 3F, 4JF-F = 5JF-F = 8 Hz (F5A or F5B);
(N–CH N). 19F NMR (282.23 MHz, acetone-d6)
d
À77.8 dm, 1F, 2JF-
F = 150 Hz (F3aA); À78.0 dm, 1F, 2JF-F = 150 Hz (F3aB); À79.5 q, 3F,
4
4JF-F = 5JF-F = 9 Hz (F5A or F5B); À79.6 q, 3F, JF-F = 5JF-F = 9 Hz (F5A
2
4
2
or F5B); À80.4 dm, 2F, JF-F = 140 Hz (F6a); À80.6 m, 6F, (F14);
À79.5 q, 3F, JF-F = 5JF-F = 9 Hz (F5A or F5B); À80.4 dm, 2F, JF-
F = 150 Hz (F6a); À80.9 dm, 1F, 2JF-F = 140 Hz (F3bB); À81.0 dm, 1F,
2JF-F = 140 Hz(F3bA);À81.0t,3F,4JF-F = 6 Hz(F8AorF8B);À81.1t,3F,
4JF-F = 6 Hz (F8A or F8B); À81.3 d, 3F, 5JF-F = 13 Hz (F2A or F2B); À81.3
4
2
À81.0 t, 3F, JF-F = 7 Hz (F8A or F8B); À81.1 dm, 1F, JF-F = 150 Hz
(F3bB); À81.1 t, 3F, JF-F = 7 Hz (F8A or F8B); À81.3 d, 3F, JF-
4
5
F = 11 Hz (F2A or F2B); À81.3 dm, 1F, JF-F = 150 Hz (F3bA); À81.4
2
dm, 2F, 2JF-F = 140 Hz (F6b); À81.5 d, 3F, 5JF-F = 11 Hz (F2A or F2B);
dm, 3F, JF-F = 150 Hz (F6bB); À81.5 dm, 1F, JF-F = 150 Hz (F6bA);
2
2
À116.7 t, 4F, JF-H = 15 Hz (F9); À121.4 m, 4F (F11); À122.1 m, 4F
À81.5 d, 3F, JF-F = 13 Hz (F2A or F2B); À129.2 s, 2F (F7A or F7B);
3
5
(F10); 122.2 m, 4F (F12); 125.7 m, 4F (F13); À129.1 s, 2F (F7A or F7B);
À129.3 s, 2F (F7A or F7B); À134.5 dq, 1F, 4JF-F = 3JH-F = 22 Hz (q), 4JF-
À129.3 s, 2F (F7A or F7B); À134.6 dq, 1F, 4JF-F = 3JH-F = 22 Hz (q), 4JF-
F = 15 Hz(d)(F1B);À135.0dq,1F,4JF-F = 3JH-F = 22 Hz(q),4JF-F = 15 Hz
F = 15 Hz (d) (F1B); À135.2 dq, 1F, JF-F = 3JH-F = 22 Hz (q), JF-
(d)(F1A); À144.0 tm, 1F, 4JF-F = 22 Hz(F4A orF4B); À144.1 m, 1F (F4A
4
4
F = 15 Hz (d) (F1A); À143.9 tm, 2F, JF-F = 21 Hz (F4). 13C NMR
or F4B). 13C NMR (75.44 MHz, acetone-d6)
d
49.8 q, JC-F = 37.1 Hz
4
2
(75.44 MHz, acetone-d6)
d
48.8 t, 1C, 2JC-F = 23 Hz (CF2-CH2); 49.6 d,
(CF3-CH2); 49.4 d, 2JC-F = 20.6 Hz (CF–CH2); 100–126 m, 8C (CF, CF2
and CF3 groups); 125.1 s (CH CH); 125.8 s, (CH CH); 140.9 s, (N–
CH N). MS (ESI), m/z (%): 615 [MÀ8IÀ]+, 100; 147 [I]À, 100.
2
1C, JC-F = 20 Hz (CF–CH2); 100–126 m, 14C (CF, CF2 and CF3
groups); 125.7 s, 1C (CH CH); 125.8 s, 1C (CH CH); 141.0 s, 1C (N–
CH N). MS (ESI), m/z (%): 865 [MÀIÀ]+, 100; 127 [I]À, 100.
4.25. Model reaction 1: attempted nucleophilic substitution of benzyl
chloride with sodium azide in fluorous ionic liquid
4.23. 1-(3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctyl)-3-
[2,4,4,5,7,7,8,8,9,9,9-undecafluoro-2,5-bis(trifluoromethyl)-3,6-
dioxanonyl]imidazolium iodide (9c)
Aflaskwasloadedwithfluoroalkoxylatedimidazoliumtriflate3a
(0.70 g, 0.61 mmol), NaN3 (1.04 g, 16.0 mmol) and benzyl chloride
From the metathesis of 41 mg (0.04 mmol) of fluoroimidazo-
lium triflate 3c and 30 mg (0.20 mmol) of NaI, 32 mg (79%) of
product9c was obtained according to the general procedure. 1H
(1.33 g, 10.5 mmol). The heterogeneous mixture was stirred for 4
days at 40 8C. After cooling with ice-water mixture, the upper
organic layer was separated and analyzed by 1H NMR, showing 22%
conversion of benzyl chloride to benzyl azide without any other
products formed. The bottom fluorous layer was dissolved in diethyl
ether (25 ml) and washed with water (3 Â 20 ml). From the organic
layer, the solvent was removed using a rotary vacuum evaporator
(40 8C/1 h/2 kPa) followed by heating the residue in vacuo (75 8C/
12 h/10 Pa). Analysis of the residue by 1H and 19F NMR spectroscopy
indicated a partial degradation (about 40%) of the ionic liquid 3a into
3
3
NMR (299.97 MHz, acetone-d6)
d 3.25 tt, JH-F = 19.4 Hz, JH-
3
H = 6.7 Hz (CF2-CH2-CH2); 5.07 t, 2H, JH-H = 7.3 Hz (CF2-CH2-
CH2); 5.85 m, 2H (CF–CH2); 8.09 m, 1H, (CH CH); 8.30 m, 1H
(CH CH); 10.10 m, 1H (N–CH N). 19F NMR (282.23 MHz, acetone-
2
4
d6)
d
À77.8 dm, 2F, JF-F = 145 Hz (F3a); À79.4 q, 3F, JF-F = 5JF-
F = 10 Hz (F5A or F5B); À79.5 q, 3F, 4JF-F = 5JF-F = 10 Hz (F5A or F5B);
À80.4 dm, 2F, 2JF-F = 145 Hz (F6); À80.6 t, 3F, 4JF-F = 10 Hz (F14A or
F14B); À80.7 t, 3F, JF-F = 10 Hz (F14A or F14B); À80.8 dm, 2F, JF-
a complex mixture containing fluoroalkoxylated imidazole 1
together with other non-identified side products.
4
2
F = 145 Hz (F3b); À81.0 t, 3F, JF-F = 6 Hz (F8A or F8B); À81.1 t, 3F,
4
4JF-F = 6 Hz (F8A or F8B); À81.3 d, 3F, JF-F = 13 Hz (F2A or F2B);
5
À81.3 dm, 2F, 2JF-F = 145 Hz (F6b); À81.4 d, 3F, 5JF-F = 13 Hz (F2A or
F2B); À113.5 m, 4F (F9); À121.4 m, 4F (F11); À122.4 m, 4F (F10);
À123.1 m, 4F (F12); À125.7 m, 4F (F13); À129.1 s, 2F (F7A or F7B);
À129.2 s, 2F (F7A or F7B); À134.5 dq, 1F, 4JF-F = 3JH-F = 22 Hz (q), 4JF-
4.26. Model reaction 2: attempted reaction of tetrahydrofuran with
benzoyl chloride in fluorous ionic liquid
A flask was loaded with fluoroalkoxylated imidazolium triflate
3a (0.56 g, 0.5 mmol) and anhydrous AlCl3 (0.13 g, 1.0 mmol) and
the mixture was stirred for 5 h at r.t. THF (60 mg, 0.9 mmol) was
added followed after 15 min by dropwise addition of benzoyl
chloride (0.12 g, 0.9 mmol). The reaction mixture was stirred
overnight at r.t., then water (20 ml) was added and the mixture
was extracted with chloroform (3 Â 20 ml). The organic layer was
dried over anhydrous MgSO4 and chloroform was removed using a
rotary vacuum evaporator (40 8C/1 h/2 kPa). Analysis of the
residue by 1H NMR showed only traces of the targeted product
in a complex mixture of side-products.
F = 15 Hz (d) (F1B); À134.9 dq, 1F, JF-F = 3JH-F = 22 Hz (q), JF-
4
4
F = 15 Hz (d) (F1A); À144.0 tm, 1F, 4JF-F = 21 Hz (F4A); À144.1 m, 1F
(F4B). 13C NMR (75.44 MHz, acetone-d6)
d
31.1 t, JC-F = 20.7 Hz
3
4
2
(CF2-CH2-CH2); 42.9 t, JC-F = 4.8 Hz (CF2-CH2-CH2); 49.4 d, JC-
F = 21.0 Hz (CF–CH2); 100(140 m, 14C (CF, CF2 and CF3 groups);
123.9 s, (CH CH); 125.0 s (CH CH); 139.7 s, (N–CH N). MS (ESI),
m/z (%): 879 [MÀIÀ]+, 100; 127 [I]À, 100.
4.24. 1-(2,2,2-Trifluoroethyl)-3-[2,4,4,5,7,7,8,8,9,9,9-undecafluoro-
2,5-bis(trifluoromethyl)-3,6-dioxanonyl]imidazolium iodide (9d)
4.27. Model reaction 3: Diels–Alder reaction of 2,3-dimethylbuta-1,3-
diene (DMB) with dimethyl acetylenedicarboxylate (DMAD) in a
fluorous ionic liquid
A flask was loaded with ionic liquid 3a (0.61 g, 0.6 mmol), DMB
(0.13 g, 1.6 mmol) and DMAD (0.22 g, 1.5 mmol). The flask was