Page 7 of 8
Journal of the American Chemical Society
15, 6298. (d) Cornella, J.; GómezꢀBengoa, E.; Martin, R. J. Am.
Chem. Soc. 2013, 135, 1997.
These observations reinforce the notion that a “classical” oxiꢀ
dative addition of the C(sp2)–OMe bond to Ni(0) might not be
operative.
1
2
3
4
5
6
7
8
(9) For an isolated ligandless C–C bondꢀformation of aryl methyl
ethers using stoichiometric and highly reactive organolithium
derivatives: Leinendecker, M.; Hsiao, C.ꢀC.; Guo, L.; Alandini,
N.; Rueping, M. Angew. Chem. Int. Ed. 2014, 53, 12912.
(10) For recent references: (a) Cornella, J.; Jackson, E. P.; Martin, R.
Angew. Chem. Int. Ed. 2015, 54, 4075. (b) Correa, A.; Martin,
R. J. Am. Chem. Soc. 2014, 136, 7253. (c) Zarate, C.; Martin,
R. J. Am. Chem. Soc. 2014, 136, 2236. (d) Correa, A.; León, T.;
Martin, R. J. Am. Chem. Soc. 2014, 134, 1062. (e) refs. 5a, 6f,
8c and 8d.
(11) (a) Muzafarov, A. M. Silicon Polymers; Springer: Heidelberg,
2011. (b) Röshe, L.; John, P.; Reitmeier, R. Organic Silicon
Compounds; Ullmann’s Encyclopedia of Industrial Chemistry;
WileyꢀVCH: Weinheim, 2003. (c) Weber, W. R. Silicon Rea-
gents for Organic Synthesis; SpringerꢀVerlag: Berlin, 1983.
(12) The term “ligandless” or “ligandꢀfree” refers to a catalytic
system with no added ligand.
(28) Cheng, C.; Hartwig, J. F. Science 2014, 343, 853.
(29) (a) Slocum, D. W.; Reinscheld, T. K.; White, C. B.; Timmons,
M. D.; Shelton, P. A.; Slocum, M. G.; Sandlin, R. D.; Holland,
E. G.; Kusmic, D.; Jennings, J. A.; Tekin, K. C.; Nguyen, Q.;
Bush, S. J.; Keller, J. M.; Whitley, P. E. Organometallics 2013,
32, 1674. (b) Hartung, C. G.; Snieckus, V. In Modern Arene
Chemistry; Astruc, D., Ed.; WileyꢀVCH: Weinheim, 2002.
(30) (a) Cheng, C.; Hartwig, J. F. Chem. Rev. 2015, 115, 8946. (b)
Oyamada, J.; Nishiura, M.; Hou, Z. Angew. Chem. Int. Ed.
2011, 50, 10720.
(31) Funaki, K.; Sato, T.; Oi, S. Org. Lett. 2012, 14, 6816
(32) (a) Crabtree, R. H. Chem. Rev. 2012, 112, 1536. (b) Widegren,
J. A.; Finke, R. G. J. Mol. Catal. A. 2003, 198, 317. (c) Yu, K.
Q.; Sommer, Wꢀ: Weck, M.; Jones, C. W. J. Catal. 2004, 336,
101. (d) Foley, P.; Dicosimo, R.; Whitesides, G. M. J. Am.
Chem. Soc. 1980, 102, 6713.
(33) In contrast to heterogeneous systems, no induction period was
observed. See for example: (a) Widegren, J. A.; Bennett, M. A.;
Finke, R. G. J. Am. Chem. Soc. 2003, 125, 10301. (b) Reetz, M.
T.; Westermann, E. Angew. Chem. Int. Ed. 2000, 39, 165.
(34) For a recent heterogeneous ligandless C–O hydrogenolysis at
high temperatures with Ni(COD)2: Sergeev, A. G.; Webb, J. D.;
Hartwig, J. F. J. Am. Chem. Soc. 2012, 134, 20226.
(35) For a selection of recent Niꢀcatalyzed C–OMe hydrogenolysis:
in the presence of dative ligands: (a) refs. 6d and 6f. (b) Serꢀ
geev, A. G.; Hartwig, J. F. Science 2011, 332, 439.
(36) Tadross, P. M.; Stoltz, B. M. Chem. Rev. 2012, 112, 3550.
(37) Matsumoto, A.; Ito, Y. J. Org. Chem. 2000, 65, 5707.
(38) (a) Sakurai, H.; Kondo, F. J. Organomet. Chem. 1975, 92, C46.
(b) Corriu, R. J. P.; Guerin, C. Chem. Commun. 1980, 4, 168.
(39) Silyl radicals are known to rapidly react with unsaturated
bonds, including those of aromatic systems. See: Chatgiliꢀ
aloglu, C.; Ingold, K. U.; Scaiano, J. C. J. Am. Chem. Soc.
1983, 105, 3292.
(40) For the generation of silyl anions from silyl boronates and
KOtBu, see: Kleeberg, C.; Borner, C. Eur. J. Inorg. Chem.
2013, 2799.
(41) Jonas, K.; Pörschke, K. R.; Krüger, C.; Tsay, Y.ꢀH. Angew.
Chem., Int. Ed. 1976, 15, 621.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(13) Boebel, T. A.; Hartwig, J. F. Organometallics 2008, 27, 6013.
(14) For comprehensive reviews dealing with the utility of sily
boronates: (a) Oestreich, M.; Hartmann, E.; Mewald, M. Chem.
Rev. 2013, 113, 402. (b) Ohmura, T.; Suginome, M. Bull.
Chem. Soc. Jpn. 2009, 82, 29.
(15) See Supporting information for details
(16) See for example: (a) Fürstner, A.; Majima, K.; Martin, R.;
Krause, H.; Kattnig, E.; Goddard, R.; Lehmann, W. J. Am.
Chem. Soc. 2008, 130, 1992. (b) ref. 8d.
(17) This notion gains credence by observing the following reactiviꢀ
ty trend in differently substituted 2ꢀnaphthyl ethers: OMe >
OEt > OiPr >> OtBu. See ref. 15.
(18) Postigo, A.; Rosi, R. A. Org. Lett. 2001, 3, 1197
(19) Under our optimized conditions, no ArBpin was observed in the
crude reaction mixtures.
(20) The product obtained corresponded to a formal hydrosilylation
of the ketone moiety. Such a product is likely formed via attack
of the silyl anion to the carbonyl C=O bond followed by Brookꢀ
type rearrangement, generating the observed benzyl alcohol afꢀ
ter acidic workup: (a) Moser, W. H. Tetrahedron 2001, 57,
2065. (b) Brook, A. G. Acc. Chem. Res. 1974, 7, 77.
(21) (a) Uematsu, R.; Yamamoto, E.; Maeda, S.; Ito, I.; Taketsugu,
T. J. Am. Chem. Soc. 2015, 137, 4090. (b) Yamamoto, E.;
Ukigai, S.; Ito, H. Chem. Sci. 2015, 6, 2943. (c) Yamamoto. E.;
Izumi, K.; Horita, Y.; Ito, H. J. Am. Chem. Soc. 2012, 134,
19997.
(42) For other Ni(0)ꢀate complexes obtained by exposure of
Ni(COD)2 to RLi reagents: (a) Wei, J.; Zhang, W.ꢀX.; Xi, Z.
Angew. Chem., Int. Ed. 2015, 54, 5999. (b) Kaschube, W.;
(22) Toutov, A. A.; Liu, W.ꢀB.; Betz, K. N.; Fedorov, A.; Stoltz, B.
M.; Grubbs, R. H. Nature 2015, 518, 80.
Pörschke, K.ꢀR.; Angermund, K.; Krüger, C.; Wilke, G. Chem.
Ber. 1988, 121, 1921.
(23) For remarkable exceptions of η2ꢀcomplexes of regular arenes to
electronꢀrich Ni(0) complexes, see: (a) Velian, A.; Lin, S.; Milꢀ
ler, A. J. M.; Day, M. W.; Agapie, T. J. Am. Chem. Soc. 2010,
132, 6296. (b) Hatnean, J. A.; Beck, R.; Borrelli, K. D.; Johnꢀ
son, S. A. Organometallics 2010, 29, 6077. (c) Bach, I.;
Pörschke, K. R.; Goddard, R.; Kopiske, C.; Krüger, C.; Rufinꢀ
ska, A.; Seevogel, K. Organometallics 1996, 15, 4959.
(24) For selected references: (a) Liu, X.; Hsiao, C.ꢀC.; Kalvet, I.;
Leiendecker, M.; Guo, L.; Schoenebeck, F.; Rueping, M. An-
gew. Chem. Int. Ed. 2016, 55, 6093. (b) Tobisu, M.; Yasutome,
A.; Kinuta, H.; Nakamura, K.; Chatani, N. Org. Lett. 2014, 16,
5572. (c) Morioka, T.; Nishizawa, A.; Nakamura, K.; Tobisu,
M.; Chatani, N. Chem. Lett. 2015, 44, 1729. (d) Dankwardt, J.
W. Angew. Chem., Int. Ed. 2004, 43, 2428. (e) see refs. 2, 8a, 9.
(25) The mass balance accounts for unreactive starting material
(26) A methoxy group at the meta position in 4n is considered
electronꢀpoor, as judged by its known –I effect (σmeta = +0.12).
(27) No Z/Eꢀisomerization was found upon exposure of (Z)ꢀ5j under
our optimized conditions. Likewise, not particularly significant
Z/E isomerization was found for (Z)ꢀ4j in the absence of 2a.
(43) For a related transition metalꢀmediated internal nucleophilic
aromatic substitution (IꢀSNAr) via η2ꢀcoordination: O’Reilly,
M. E.; Johnson, S. L.; Nielsen, R. J.; Goddard, W. A.; Gunnoe,
T. B. Organometallics 2016, 35, 2053.
(44) For recently proposed C(sp2)–OMe bondꢀoxidative addition to
Ni(0) species assisted by Lewis acid coordination, see: (a) Kelꢀ
ley, P.; Edouard, G. A.; Lin, S.; Agapie, T. Chem. Eur. –J.
2016, 22, 17173. (b) See also ref. 8 and 24a.
(45) For a K+ꢀassisted heterolytic C(sp2)–OMe cleavage in aryl
methyl ethers, see: Casado, F.; Pisano, L.; Farriol, M.; Gallardo,
I.; Marquet, J.; Melloni, G. J. Org. Chem. 2000, 65, 322.
ACS Paragon Plus Environment