Inorganic Chemistry
Communication
(3) Kabil, O.; Banerjee, R. J. Biol. Chem. 2010, 285, 21903−21907.
(4) Qu, K.; Lee, S. W.; Bian, J. S.; Low, C. M.; Wong, P. T. Neurochem.
Int. 2008, 52, 155−165.
parent CoPc (Figure 4). The subsequent addition of NaSH
regenerates [CoIPc]−. If protected from O2 under a N2
(5) Shatalin, K.; Shatalina, E.; Mironov, A.; Nudler, E. Science 2011,
334, 986−990.
(6) Yang, G.; Wu, L.; Jiang, B.; Yang, W.; Qi, J.; Cao, K.; Meng, Q.;
Mustafa, A. K.; Mu, W.; Zhang, S.; Snyder, S. H.; Wang, R. Science 2008,
322, 587−590.
(7) Abe, K.; Kimura, H. J. Neurosci. 1996, 16, 1066−1071.
(8) Chen, C. Q.; Xin, H.; Zhu, Y. Z. Acta Pharmacol. Sin. 2007, 28,
1709−1716.
(9) Mustafa, A. K.; Gadalla, M. M.; Snyder, S. H. Sci. Signaling 2009, 2,
re2.
(10) Wang, R. Physiol. Rev. 2012, 92, 791−896.
(11) James, B. R. Pure Appl. Chem. 1997, 69, 2213−2220.
(12) English, D. R.; Hendrickson, D. N.; Suslick, K. S.; Eigenbrot, C.
W.; Scheidt, W. R. J. Am. Chem. Soc. 1984, 106, 7258−7259.
(13) Galardon, E.; Roger, T.; Deschamps, P.; Roussel, P.; Tomas, A.;
Artaud, I. Inorg. Chem. 2012, 51, 10068−10070.
(14) Ma, E. S.; Rettig, S. J.; Patrick, B. O.; James, B. R. Inorg. Chem.
2012, 51, 5427−5434.
Figure 4. UV−vis spectra of CoPc (7 μM in THF, black trace, blue
cuvette) after treatment with 10 equiv of NaSH in DMSO (red trace,
green cuvette). Subsequent exposure to atmospheric O2 regenerates
CoPc. The inset shows changes in the Q band, corresponding to three
cycles of treatment with HS− followed by exposure to air.
(15) Ma, E. S. F.; Rettig, S. J.; James, B. R. Chem. Commun. 1999,
2463−2464.
(16) Reboucas, J. S.; James, B. R. Inorg. Chem. 2013, 52, 1084−1098.
(17) Pavlik, J. W.; Noll, B. C.; Oliver, A. G.; Schulz, C. E.; Scheidt, W. R.
Inorg. Chem. 2010, 49, 1017−1026.
atmosphere, the [CoIPc]− product is stable and does not
spontaneously revert to CoPc. Unlike ZnPc, this chemically
reversible reaction with HS− results in a color change that can be
easily detected by the naked eye (Figure 4, inset), highlighting
the potential for future use in chemically reversible colorimetric
HS− detection.
Taken together, these studies with ZnPc and CoPc
demonstrate the differential reactivity of HS− and H2S toward
metal centers and highlight how these changes in a protonation
state can be used to generate chemically reversible HS− ligation,
in the case of ZnPc. Additionally, these examples of chemical
reversibility clarify the fundamental reaction chemistry of
porphyrin-derived scaffolds with H2S and expand the funda-
mental understanding of how H2S interacts with biologically
relevant metal scaffolds. To further expand on this chemistry, we
are currently pursuing water-soluble derivatives for chemically
reversible anaerobic H2S detection, which will be reported in due
course.
(18) Reboucas, J. S.; Patrick, B. O.; James, B. R. J. Am. Chem. Soc. 2012,
134, 3555−3570.
(19) Meininger, D. J.; Caranto, J. D.; Arman, H. D.; Tonzetich, Z. J.
Inorg. Chem. 2013, 52, 12468−12476.
(20) Collman, J. P.; Ghosh, S.; Dey, A.; Decreau, R. A. Proc. Natl. Acad.
Sci. U. S. A. 2009, 106, 22090−22095.
(21) Collamati, I.; Ercolani, C.; Rossi, G. Inorg. Nucl. Chem. Lett. 1976,
12, 799−802.
(22) Lieber, C. M.; Lewis, N. S. J. Am. Chem. Soc. 1984, 106, 5033−
5034.
(23) Ghani, F.; Kristen, J.; Riegler, H. J. Chem. Eng. Data 2012, 57,
439−449.
(24) Leznoff, C. C.; Lever, A. B. P. Phthalocyanines: Properties and
Applications; Wiley-VCH: New York, 1996; Vols. 1−4.
(25) Harris, D. C. Quantitative Chemical Analysis, 8th ed.; W. H.
Freeman and Company: New York, 2010.
(26) The solution becomes naturally buffered, so each addition of
NaSH or AcOH required more equivalents.
(27) Day, P.; Hill, H. A. O.; Price, M. G. J. Chem. Soc. A 1968, 90−91.
(28) Clack, D. W.; Yandle, J. R. Inorg. Chem. 1972, 11, 1738−1742.
(29) Fischer, H.; Schulz-Ekloff, G.; Wohrle, D. Chem. Eng. Technol.
1997, 20, 624−632.
ASSOCIATED CONTENT
■
S
* Supporting Information
Experimental procedures, UV−vis data, Job plots, and 1H NMR
data for ZnPc and CoPc after reaction with NaSH. This material
(30) Pereira-Rodrigues, N.; Cofre, R.; Zagal, J. H.; Bedioui, F.
Bioelectrochemistry 2007, 70, 147−154.
(31) Qi, X. H.; Baldwin, R. P. J. Electrochem. Soc. 1996, 143, 1283−
1287.
(32) Rao, T. V.; Rao, K. N.; Jain, S. L.; Sain, B. Synth. Commun. 2002,
32, 1151−1157.
(33) Faddeenkova, G. A.; Kundo, N. N. Russ. J. Appl. Chem. 2003, 76,
1946−1950.
AUTHOR INFORMATION
Corresponding Author
Notes
■
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by the Oregon Medical Research
Foundation and the National Institute of General Medical
Sciences (Grant R00GM092970). The NMR facilities at the
University of Oregon are supported by NSF/ARRA (Grant
CHE-0923589).
REFERENCES
■
(1) Blackstone, E.; Morrison, M.; Roth, M. B. Science 2005, 308, 518.
(2) Czyzewski, B. K.; Wang, D. N. Nature 2012, 483, 494−497.
7802
dx.doi.org/10.1021/ic500664c | Inorg. Chem. 2014, 53, 7800−7802