Supramolecular Chemistry
7
(M ¼ 420.38): Orthorhombic, space group Pnma,
bonded arrays in the solid state via two NH· · ·O (1.96–
˚
˚
˚
a ¼ 16.5475(11) A, b ¼ 22.8442(16) A, c ¼ 4.9997(4) A
˚
2.00 A) interactions between the amide groups on adjacent
receptors.
3
˚
a ¼ 908, b ¼ 908, g ¼ 908, V ¼ 1890.0(2) A , Z ¼ 4,
T ¼ 100(2) K, m(MoKa) ¼ 0.111 mm21, Dcalc ¼ 1.477 g/
mm3, 10813 reflections measured (3.040 #2Q # 27.466),
2216 unique (Rint ¼ 0.0355) which were used in all
calculations. The final R1 was 0.0365 (I . 2s(I)) and wR2
was 0.0982 (all data).
Conclusions
A series of N, N0-(phenylmethylene)dibenzamide based
receptors were found to function as Cl2=NO32 and
Cl2=HCO23 antiporters, most likely by a mobile carrier
mechanism although evidence of aggregation in solution
was observed which complicated unambiguous determi-
nation of the transport mechanism. Self-aggregation was
supported by NMR dilution studies and was most apparent
in fluorinated receptor 5. The self-association properties of
this motif may effectively increase log P and hence
enhance the transport properties of the compounds.
Substituent effects and lipophilicity were found to be
important parameters involved in the binding and transport
abilities. One can envisage this hydrogen-bonding motif
being used instead of urea in a variety of self-assembled
structures due to the formation of two nearly linear
hydrogen-bonding interactions. We are continuing to
investigate the properties of this hydrogen-bonding array.
References
(1) Davis, J.T.; Okunola, O.; Quesada, R. Chem. Soc. Rev.
(2) Davis, A.P.; Sheppard, D.N.; Smith, B.D. Chem. Soc. Rev.
(3) Sessler, J.L.; Gale, P.A.; Cho, W.S. Anion Receptor
Chemistry; Stoddart, J.F., Ed.; RSC: Cambridge, 2006.
(4) Ashcroft, F.M. Ion Channels and Disease Channelopathies;
San Diego: Academic Press, 2000.
(5) Matile, S.; Vargas Jentzsch, A.; Montenegro, J.; Fin, A.
Chem. Soc. Rev. 2011, 40, 2453–2474. doi:10.1039/
(6) Busschaert, N.; Gale, P.A. Angew. Chem. Int. Ed. Engl.
(7) Gale, P.A. Acc. Chem. Res. 2011, 44, 216–226. doi:10.
´
´
(8) Gale, P.A.; Perez-Tomas, R.; Quesada, R. Acc. Chem. Res.
(9) Amendola, V.; Fabbrizzi, L.; Mosca, L. Chem. Soc. Rev.
Supplemental data
(10) Andrews, N.J.; Haynes, C.J. E.; Light, M.E.; Moore, S.
J.; Tong, C.C.; Davis, J.T.; Harrell, Jr, W.A.; Gale, P.A.
The underlying data for this article can be accessed at
Chem. Sci. 2011,
(11) Moore, S.J.; Wenzel, M.; Light, M.E.; Morley, R.;
Disclosure statement
´
Bradberry, S.J.; Gomez-Iglesias, P.; Soto-Cerrato, V.;
Perez-Tomas, R.; Gale, P.A. Chem. Sci. 2012, 3,
´
´
No potential conflict of interest was reported by the authors.
(12) Haynes, C.J.E.; Moore, S.J.; Hiscock, J.R.; Marques, I.;
´
Costa, P.J.; Felix, V.; Gale, P.A. Chem. Sci. 2012, 3,
Funding
We thank the EPSRC for a DTP studentship (HJC), for access to
the crystallographic facilities at the University of Southampton
and for EPSRC Core Capability Funding [grant number EP/
K039466/1]. WVR and PAG thank the EU for a Marie Curie
Career Integration grant. PAG thanks the Royal Society and the
Wolfson Foundation for a Research Merit Award.
´
(13) Gomez, D.E.; Fabbrizzi, L.; Licchelli, M.; Monzani, E. Org.
Biomol. Chem. 2005, 3, 1495–1500.
(14) Brooks, S.J.; Edwards, P.R.; Gale, P.A.; Light, M.E. New
(15) Brooks, S.J.; Gale, P.A.; Light, M.E. Chem. Commun. 2005,
(16) Yang, P.; Myint, K.-Z; Tong, Q.; Feng, R.; Cao, H.;
Almehizia, A.A.A.; Alqarni, M.H.; Wang, L.; Bartlow, P.;
Gao, Y.; Gertsch, J.; Teramachi, J.; Kurihara, N.; Roodman,
G.D.; Cheng, T.; Xie, X.-Q. J. Med. Chem. 2012, 55,
(17) Busschaert, N.; Kirby, I.L.; Young, S.; Coles, S.J.; Horton,
P.N.; Light, M.E.; Gale, P.A. Angew. Chem. Int. Ed. Engl.
(18) Job, P. Ann. Chim. Appl. 1928, 9, 113–203.
(19) Hynes, M.J. J. Chem. Soc. Dalton Trans. 1993, 311–312.
(20) Koulov, A.V.; Lambert, T.N.; Shukla, R.; Jain, M.; Boon, J.
M.; Smith, B.D.; Li, H.; Sheppard, D.N.; Joos, J.-B.; Clare,
J.P.; Davis, A.P. Angew. Chem. Int. Ed. Engl. 2003, 42,
(21) Marcus, Y. J. Chem. Soc. Faraday Trans. 1991, 87,
(22) Hill, A.V. Biochem. J. 1913, 7, 471–480.
Note
1. X-ray data were collected on
a Rigaku AFC 12
diffractometer mounted on Rigaku FR-Eþ Super Bright
High Flux rotating anode CCD diffractometer equipped with
VariMax high flux (HF) optics and Saturn 724 þ CCD
detector (34).
Crystal data for receptor 6. CCDC 1053070, C26H13F15N2O2
(M ¼ 670.38): orthorhombic, space group Pnma,
˚
˚
˚
a ¼ 9.7085(2) A, b ¼ 26.9582(10) A, c ¼ 10.0203(2) A,
3
˚
a ¼ 908, b ¼ 908, g ¼ 908, V ¼ 2622.53(12) A , Z ¼ 4,
T ¼ 100(2) K, m(MoKa) ¼ 0.181 mm21, Dcalc ¼ 1.698 g/
mm3, 16362 reflections measured (2.168 # Q # 31.993),
4347 unique (Rint ¼ 0.0253) which were used in all
calculations. The final R1 was 0.0581 (I . 2s(I)) and wR2
was 0.1431 (all data).
Crystal data for receptor 2. CCDC 1053071, C21H16N4O6