JOURNAL OF
POLYMER SCIENCE
WWW.POLYMERCHEMISTRY.ORG
ARTICLE
membrane contains the longest flexible aliphatic side chain,
which is expected to form ion channel for transporting
protons.
2 N. Asano, M. Aoki, S. Suzuki, K. Miyatake, H. Uchida, M.
Watanabe, J. Am. Chem. Soc. 2006, 128, 1762–1769.
3
S. Besse, P. Capron, G. Gebel, F. Jousse, D. Marsacq, M.
Pineri, C. Marestin, R. Mercier, J. New Mater Electrochem Sys-
tems 2002, 5, 109–112.
Morphology
4
C. Genies, R. Mercier, B. Sillion, N. Cornet, G. Gebel, M.
The microstructure of the SPAEEN-x membranes was investi-
gated by AFM. As shown in Figure 9, both SPAEEN-6 and
SPAEEN-12 membranes display the formation of phase-
separated structures, in which the alkylated sulfonic acids
would aggregate into hydrophilic clusters. In the AFM
images, more organized phase-separated morphology can be
observed for the SPAEEN-12 membrane than that of
SPAEEN-6. This indicates that the longer alkyl side chain
could induce the formation of well-organized nanodomains.
The formation of the domains in a series of SPAEEN mem-
branes would be to improve proton conductivity and oxida-
tive stability. The aggregation of the sulfonic acids supported
by longer flexible alkyl chains generates the well-developed
nanochannel liked morphology, which could improve the
proton conduction at low RH and also prevent from oxidiz-
ing the polymer main chain by hydroxyl radical attack.
Pineri, Polymer 2001, 42, 359–373.
5
T. Higashihara, K. Matsumoto, M. Ueda, Polymer 2009, 50,
5
341–5357.
6
J. M. Bae, I. Honma, M. Merata, T. Yamamoto, M. Rikukawa,
N. Ogata, Solid State Ionics, 2002, 147, 189–194.
7
8
9
J. A. Kerres, J. Membr. Sci. 2001, 185, 3–27.
V. Mehta, J. S. Cooper, J. Power Sources 2003, 114, 32–53.
K. Nakabayashi, K. Matsumoto, M. Ueda, J. Polym. Sci., Part
A: Polym. Chem. 2008, 46, 3947–3957.
0 K. Matsumoto, T. Nakagawa, T. Higashihara, M. Ueda, J.
Polym. Sci., Part A: Polym. Chem. ,47, 5827–5834.
1 K. Nakabayashi, T. Higashihara, M. Ueda, J. Polym. Sci.,
Part A: Polym. Chem. 2010, 48, 2757–2764.
1
1
1
2
2 K. Nakabayashi, T. Higashihara, M. Ueda, Macromolecules
010, 43, 5756–5761.
1
3 X. Guo, J. Fang, T. Watari, K. Tanaka, H. Kita, K. Okamoto,
Macromolecules 2002, 35, 6707–6713.
CONCLUSIONS
14 J. Fang, X. Guo, S. Harada, T. Watari, K. Tanaka, H. Kita, K.
Okamoto, Macromolecules 2002, 35, 9022–9028.
A series of SPAEEN-x copolymers containing different chain
lengths of alkylsulfonates have been prepared by a three-
step reaction, that is, polycondensation of DFBN containing a
strongly polar ACN group with MRS and MHQ, followed by
demethylation and the reaction with alkanesultones or
sodium bromoalkylsulfonates. The resulting membranes
exhibited a high thermal stability despite the full aliphatic
side chains, high oxidative stability against Fenton’s reagent
at room temperature, low water uptake and dimensional
change even at 95% RH. The SPAEEN-3 membrane with the
IEC of 2.69 mequiv g displayed the highest proton conduc-
tivity among these prepared membranes over the entire
range of RH from 30 to 95%. On the other hand, the
SPAEEN-12 membrane with the longer side chain displayed
a lower water uptake and higher proton conductivity (at
1
5 Y. Yin, J. Fang, H. Kita, K. Okamoto, Chem. Lett. 2003, 32,
3
28–329.
1
6 K. Si, D. Dong, R. Wycisk, M. Litt, J. Mater. Chem. 2012, 22,
2
0907–20917.
1
7 Y. Yin, Y. Suto, T. Sakabe, S. Chen, S. Hayashi, T. Mishima,
O. Yamada, K. Tanaka, H. Kita, K. Okamoto, Macromolecules
2006, 39, 1189–1198.
18 Z. Hu, Y. Yin, K. Okamoto, Y. Moriyama, A. Morikawa, J.
Membr. Sci. 2009, 329, 146–152.
19 Y. Yin, Q. Du, Y. Qin, Y. Zhou, K. Okamoto, J. Membr. Sci.
2
1
2
011, 367, 211–219.
2
0 T. Yasuda, Y. Li, K. Miyatake, M. Hirai, M. Nanasawa, M.
Watanabe, J. Polym. Sci., Part A: Polym. Chem. 2006, 44, 3995–
4
005.
2
1 K. Miyatake, T. Yasuda, M. Hirai, M. Nanasawa, M.
Watanabe, J. Polym. Sci., Part A: Polym. Chem. 2007, 45, 157–
30% RH) than those with the shorter side chain membrane
1
63.
SPAEEN-6 in spite of its lower IEC value. The introduction of
more than six aliphatic carbons as the side chain may
improve the proton conductivity especially at a low RH by
forming a well-developed phase separation.
2
2 A. Kabasawa, J. Saito, H. Yano, K. Miyatake, H. Uchida, M.
Watanabe, Electrochem. Acta 2009, 54, 1076–1082.
2
3 N. Gao, F. Zhang, S. B. Zhang, J. Liu, J. Membr. Sci. 2011,
3
72, 49–56.
2
4 D. S. Kim, Y. S. Kim, M. D. Guiver, B. S. Pivovar, J. Membr.
Sci. 2008, 321,199–208.
ACKNOWLEDGMENTS
2
5 C. S. Marvel, C. F. Bailey, M. S. Sparburg, J. Am. Chem.
This work was supported by Industrial Technology Research
Grant Program in 2011 (#11B02008c) from New Energy and
Industrial Technology Development Organization (NEDO) of
Japan.
Soc. 1927, 49, 1833–1837.
26 L. Sheng, T. Higashihara, S. Nakazawa, M. Ueda, Polym.
Chem. 2012, 3, 3289–3295.
27 L. Sheng, T. Higashihara, R. Maeda, T. Hayakawa, M. Ueda,
J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2216–2224.
2
8 Y. S. Kim, D. S. Kim, B. Liu, M. D. Guiver, B. S. Pivovar, J.
REFERENCES AND NOTES
Electrochem. Soc. 2008, 155, B21–B26.
1
J. Roziere, D. J. Jones, Annu. Rev. Mater. Res. 2003, 33, 503–
29 K. Hase, T. Nakano, A. Koiwai, ECS Trans. 2007, 11, 159–
555.
164.
WWW.MATERIALSVIEWS.COM
JOURNAL OF POLYMER SCIENCE, PART A: POLYMER CHEMISTRY 2014, 52, 21–29
29