pubs.acs.org/joc
Diorganyl selenides are versatile tools in organic chemistry,
and have found wide application as radical precursors, in
Synthesis of Diorganyl Selenides Mediated by Zinc in
Ionic Liquid
4
elimination reactions, and as selenium-stabilized carbanions.
Chiral diorganyl selenides are also used as efficient ligands in
asymmetric reactions.
†
Senthil Narayanaperumal, Eduardo E. Alberto,
†
5
†
Kashif Gul, Oscar E. D. Rodrigues,* and
,†
,
‡
These compounds are generally prepared by reductive
cleavage of Se-Se bonds, employing common reducing
agents such as NaBH , LiAlH , and other expensive metal
sources such as La, In, Yb, Sm, etc. Most of the procedures
require handling of unstable reagents, strongly acidic or
basic conditions, or two-step procedures. Thus, there is still
considerable interest in the development of highly efficient
Antonio L. Braga*
†
Departamento de Quı´mica, Universidade Federal de Santa
4
4
‡
6,7
Maria, 97105-900, Santa Maria, Brazil, and Departamento
de Quı´mica, Universidade Federal de Santa Catarina, 88040-
9
00, Florian oꢀ polis, Brazil
8
albraga@qmc.ufsc.br; rodriguesoed@smail.ufsm.br
Received March 12, 2010
methods for this transformation.
Ionic liquids are versatile and novel reaction media, for
organic transformations, and have also found application as
flexible “platforms” to establish highly effective and easily
separable systems. Room temperature ionic liquids, espe-
cially those based on the 1,3-dialkylimidazolium cation, have
attracted considerable attention due to their negligible vapor
9
(4) (a) Paulmier, C. Selenium Reagents and Intermediates in Organic
Synthesis; Pergamon: Oxford, UK, 1986. (b) Liotta, D. Organoselenium Chem-
istry; Wiley: New York, 1987. (c) Wirth, T. Organoselenium Chemistry - Modern
Developments in Organic Synthesis, Topics in Current Chemistry 208, Spring-
Verlag: Heidelberg, Germany, 2000.
(5) For a comprehensive review about the use of chiral organoselenium in
asymmetric catalysis see: (a) Wirth, T. Tetrahedron 1999, 55, 1–28. (b) Wirth,
T. Angew. Chem., Int. Ed. 2000, 39, 3740–3749. (c) Braga, A. L.; L u€ dtke,
D. S.; Vargas, F.; Braga, R. C. Synlett 2006, 1453–1466. (d) Braga, A. L.;
L u€ dtke, D. S.; Vargas, F. Curr. Org. Chem. 2006, 10, 1921–1938.
A new approach for the synthesis of diorganyl selenides is
described. By using economically attractive zinc dust in
BMIM-BF , a series of diorganyl selenides were effi-
4
(
e) Freudendahl, D. M.; Shahzad, S. A.; Wirth, T. Eur. J. Org. Chem.
2009, 1649–1664.
6) (a) Hoye, T. R.; Caruso, A. J. Tetrahedron Lett. 1978, 19, 4611–4614.
b) Liotta, D.; Sunay, U.; Santiesteban, H.; Markiewicz, W. J. Org. Chem.
ciently achieved in excellent yields, under neutral reaction
conditions. Compared to the usual organic solvents,
BMIM-BF exhibited higher performance with the ad-
(
(
4
1981, 46, 2605–2610. (c) Yoshimatsu, M.; Sato, T.; Shimizu, H.; Hori, M.;
Kataoka, T. J. Org. Chem. 1994, 59, 1011–1019. (d) Andreadou, I.; Menge,
W. M. P. B.; Commandeur, J. N. M.; Worthington, E. A.; Vermeulen,
N. P. E. J. Med. Chem. 1996, 39, 2040–2046. (e) Nishino, T.; Okada, M.;
Kuroki, T.; Watanabe, T.; Nishiyama, Y.; Sonoda, N. J. Org. Chem. 2002,
vantage to be reused up to five successive runs.
6
1
7, 8696–8698. (f) Ranu, B. C.; Mandal, T.; Samanta, S. Org. Lett. 2003, 5,
439–1441. (g) Ranu, B. C.; Mandal, T. J. Org. Chem. 2004, 69, 5793–5795.
Research on organoselenides has been driven by the
potential applications of selenium compounds in modern
(
h) Cohen, R. J.; Fox, D. L.; Salvatore, R. N. J. Org. Chem. 2004, 69, 4265–
4268. (i) Bonaterra, M.; Martın, S. E.; Rossi, R. A. Tetrahedron Lett. 2006,
7, 3511–3515. (j) Ouchi, A.; Liu, S.; Li, Z.; Kumar, S. A.; Suzuki, T.;
Hyugano, T.; Kitahara, H. J. Org. Chem. 2007, 72, 8700–8706.
7) (a) Dowsland, J.; McKerlie, F.; Procter, D. J. Tetrahedron Lett. 2000,
41, 4923–4927. (b) Su, W.; Gao, N.; Zhang, Y. J. Chem. Res. Synop. 2002, 4,
68–169. (c) Taniguchi, N.; Onami, T. J. Org. Chem. 2004, 69, 915–920.
´
1
organic synthesis and catalysis. The biological and medici-
4
nal properties of selenium and organoselenium compounds
are also becoming increasingly appreciated, mainly due to
their antioxidant, antitumor, antimicrobial, and antiviral
(
1
(
(
d) Goodman, M. A.; Detty, M. R. Organometallics 2004, 23, 3016–3020.
e) Andrade, F. M.; Massa, W.; Peppe, C.; Uhl, W. J. Organomet. Chem. 2005,
2
properties. Also, the synthesis of peptides containing sele-
nocysteine is rapidly gaining interest with the discovery of an
690, 1294–1299. (f) Wang, L.; Wang, M.; Huang, F. Synlett 2005, 2007–2010.
(g) Ajiki, K.; Hirano, M.; Tanaka, K. Org. Lett. 2005, 7, 4193–4195.
3
increasing number of proteins containing this amino acid.
(h) Movassagh, B.; Shamsipoor, M. Synlett 2005, 121–122. (i) Movassagh,
B.; Shamsipoor, M. Synlett 2005, 1316–1318. (j) Krief, A.; Derock, M.;
Lacroixa, D. Synlett 2005, 2832–2834. (k) Movassagh, B.; Tatar, A. Synlett
2007, 1954–1956.
(
1) (a) Sharpless, K. B.; Lauer, R. F. J. Am. Chem. Soc. 1973, 95, 2697–
2
1
699. (b) Sharpless, K. B.; Lauer, R. F.; Teranishi, A. Y. J. Am. Chem. Soc.
973, 95, 6137–6139. (c) Back, T. G. Organoselenium Chemistry: A Practical
Approach; Oxford University Press: New York, 1999. (d) Devillanova, F. A.
Handbook Of Chalcogen Chemistry: New Perspectives in S, Se and Te; Royal
Society of Chemistry: Cambridge, UK, 2006. (e) McGarrigle, E. M.; Myers, E. L.;
Illa, O.; Shaw, M. A.; Riches, S. L.; Aggarwal, V. K. Chem. Rev. 2007, 107, 5841–
(8) Recently Santi et al. described an elegant synthesis of stable PhSeZnX
(X = Cl or Br) species prepared from PhSeX and Zn, which act as
nucleophiles toward a series of electrophiles. However, we reasoned that
for our purposes use of diselenides and elemental zinc would be more
attractive since we would be able to prepare in situ a wide range of selenium
species that act exactly in the same way as those mentioned above. (a) Santi,
C.; Santoro, S.; Testaferri, L.; Tiecco, M. Synlett 2008, 1471–1474. (b) Santi,
S.; Santoro, B.; Battistelli, L.; Testaferri, L.; Tiecco, M. Eur. J. Org. Chem.
2008, 5387–5390.
(9) (a) Anastas, P. T.; Kirchhoff, M. M. Acc. Chem. Res. 2002, 35, 686–
694. (b) Trost, B. M. Acc. Chem. Res. 2002, 35, 695–705. (c) Wulff, G. Chem.
Rev. 2002, 102, 1–28. (d) Dupont, J.; Fonseca, G. S.; Umpierre, A. P.;
Fichtner, P. F. P.; Teixeira, S. R. J. Am. Chem. Soc. 2002, 124 (16), 4228–
4229. (e) Cassol, C. C.; Umpierre, A. P.; Machado, G.; Wolke, S. I.; Dupont.,
J. J. Am. Chem. Soc. 2005, 127 (10), 3298–3299.
5
2
883. (f) Perin, G.; Lenard ~a o, E. J.; Jacob, R. G.; Panatieri., R. B. Chem. Rev.
009, 109, 1277–1301. (g) Freudendahl, D. M.; Santoro, S.; Shahzad, S. A.; Santi,
C.; Wirth, T. Angew. Chem., Int. Ed. 2009, 48, 8409–8411.
2) (a) Nogueira, C. W.; Zeni, G.; Rocha, J. B. T. Chem. Rev. 2004, 104,
(
255–6286. (b) Sarma, B. K.; Mugesh, G. Org. Biomol. Chem. 2008, 6, 965–
74.
6
9
(3) (a) Stadman, T. C. Annu. Rev. Biochem. 1996, 65, 83–100. (b) Jacob,
C.; Giles, G. I.; Giles, N. M.; Sies, H. Angew. Chem., Int. Ed. 2003, 42, 4742–
758. (c) Muttenthaler, M.; Alewood, P. F. J. Pept. Chem. 2008, 14 (12),
223–1239.
4
1
3
886 J. Org. Chem. 2010, 75, 3886–3889
Published on Web 05/03/2010
DOI: 10.1021/jo100454m
r 2010 American Chemical Society