2
58
D. Chao et al. / Electrochimica Acta 60 (2012) 253–258
electrochromic performance was collected after 100 cycles of
potential switching. The switching time increased to 4.2 s at 0.8 V
for the coloring process and 2.0 s at −0.2 V for bleaching, and the
References
[1] R.J. Mortimer, Chem. Soc. Rev. 26 (1997) 147.
[2] R.J. Mortimer, A.L. Dyer, J.R. Reynolds, Displays 27 (2006) 2.
[3] R.D. Rauh, Electrochim. Acta 44 (1999) 3165.
2
coloration efficiency decreased to 91.2 cm /C. The optical contrast
value also partially decreased after 100 cycles.
[4] L. Zhao, L. Zhao, Y.X. Xu, T.F. Qiu, L.J. Zhi, G.Q. Shi, Electrochim. Acta 55 (2009)
91.
4
While the optical contrast value and the switching time of
Azo-PAE-p-OA film were not good enough to achieve the demand
of the electrochromic devices, due to the low content percent
of the oligoaniline in Azo-PAE-p-OA. It makes a highly competi-
tive candidate for an electrochromic material, however, because
the parameters including the optical contrast value, the switch-
ing time and the coloration efficiency could be modulated easily
by using different concentrations of the two chromophores in
the polymer architecture. Further research on the multicolor elec-
trochromic materials with the satisfactory parameter is currently
underway.
[
[
5] T. Kobayashi, K. Fujita, J. Muto, J. Mater. Sci. Lett. 15 (1996) 1276.
6] K. Choi, S.J. Yoo, Y.E. Sung, R. Zentel, Chem. Mater. 18 (2006) 5823.
[7] V. Jain, H. Yochum, R. Montazami, J. Heflin, Appl. Phys. Lett. 92 (033304) (2008)
1.
[
8] S.S. Kalagi, S.S. Mali, D.S. Dalavi, A.I. Inamdar, Hyunsik Im, P.S. Patil, Synth. Met.
61 (2011) 1105.
1
[9] H.L. Hu, L. Hechavarria, J. Campos, Solid State Ionics 161 (2003) 165.
[10] L. Hechavarría, H. Hu, M.E. Rincón, Thin Solid Films 441 (2003) 56.
11] D. DeLongchamp, P.T. Hammond, Adv. Mater. 13 (2001) 1455.
12] Y.H. Chen, J.Y. Wu, Y.C. Chung, Biosens. Bioelectron. 22 (2006) 489.
13] P.T. Jia, A.A. Argun, J.W. Xu, S.X. Xiong, J. Ma, P.T. Hammond, X.H. Lu, Chem.
Mater. 22 (2010) 6085.
14] R. Montazami, V. Jain, J.R. Heflin, Electrochim. Acta 56 (2010) 990.
15] L.L. Tu, C.Y. Jia, X.L. Weng, L.J. Deng, Acta Chim. Sin. 68 (2010) 2590.
16] L.X. Chen, S.H. Weng, J.Z. Zhou, Z.H. Lin, Chem. J. Chin. Univ. 31 (2010) 790.
17] A.C. Sonavane, A.I. Inamdar, H.P. Deshmukh, P.S. Patil, J. Phys. D: Appl. Phys. 43
[
[
[
[
[
[
[
4
. Conclusion
(
2010) 315102.
[
18] R. Anandakathir, T. Canteenwala, H.L. Wang, L.Y. Chiang, J. Macromol. Sci., Pure
Appl. Chem. 43 (2006) 1945.
We described the synthesis of a novel poly(aryl ether) con-
[
[
19] R. Chen, B.C. Benicewicz, Macromolecules 36 (2003) 6333.
20] D.M. Chao, X.T. Jia, H.T. Liu, L.B. He, L.L. Cui, C. Wang, E.B. Berda, J. Polym. Sci.
Part A: Polym. Chem. 49 (2011) 1605.
taining oligoaniline and azobenzene groups by a nucleophilic
polymercondensation reaction. The obtained polymer Azo-PAE-p-
OA exhibits good solubility in the organic solvents and excellent
thermal stability. Based on the coexistence of oligoaniline and
azobenzene groups, Azo-PAE-p-OA possesses reversible elec-
troactivity and expectable photoresponse to light irradiation,
chemical redox and electrochemical modulation. Moreover, the
electrochromic performance of Azo-PAE-p-OA is of interest as it
shows three accessible color states by the color mixing of the
two different chromophores. The multicolor Azo-PAE-p-OA film
exhibits good electrochromic properties with high contrast value,
moderate coloration efficiency, acceptable switching times and
stability. Taking into account molecular diversity and tailoring, a
multicolor polymer with oligoanilines and other chromophores
would be a highly competitive candidate for electrochromic
devices.
[21] J.B. Gao, D.G. Liu, J.M. Sansinena, H.L. Wang, Adv. Funct. Mater. 14 (2004) 537.
[
22] D.M. Chao, X.F. Lu, J.Y. Chen, X.G. Zhao, L.F. Wang, W.J. Zhang, Y. Wei, J. Polym.
Sci. Part A: Polym. Chem. 44 (2006) 477.
[
23] D.M. Chao, J.F. Zhang, X.C. Liu, X.F. Lu, C. Wang, W.J. Zhang, Y. Wei, Polymer 51
(2010) 4518.
[24] L.H. Huang, X.L. Zhuang, J. Hu, L. Lang, P.B. Zhang, Y. Wang, X.S. Chen, Y. We,
X.B. Jing, Biomacromolecules 9 (2008) 850.
[
25] J. Hu, L.H. Huang, L. Lang, Y.D. Liu, X.L. Zhuang, X.S. Chen, Y. Wei, X.B. Jing, J.
Polym. Sci. Part A: Polym. Chem. 47 (2009) 1298.
[26] B.L. Guo, A. Finne-Wistrand, A.C. Albertsson, Macromolecules 43 (2010) 4472.
[
[
27] B.L. Guo, A. Finne-Wistrand, A.C. Albertsson, Macromolecules 44 (2011) 5227.
28] X.T. Jia, D.M. Chao, H.T. Liu, L.B. He, T. Zheng, X.J. Bian, C. Wang, Polym. Chem.
2
(2011) 1300.
[29] M. Eich, J.H. Wendroff, B. Beck, H. Ringsdorf, Makromol. Chem. Rapid Commun.
(1987) 59.
8
[
[
30] T. Todorov, L. Nicolova, N. Tomova, Appl. Opt. 23 (1984) 4309.
31] T. Ikeda, O. Tsutsumi, Science 268 (1995) 1873.
[32] P. Rochon, E. Batalla, A. Natansohn, Appl. Phys. Lett. 66 (1995) 136.
[
[
33] D.Y. Kim, S.K. Tripathy, L. Li, J. Kumar, Appl. Phys. Lett. 66 (1995) 1166.
34] J. Ferreira, M.J.L. Santos, R. Matos, O.P. Ferreira, A.F. Rubira, E.M. Girotto, J.
Electroanal. Chem. 591 (2006) 27.
Acknowledgements
[
[
[
35] H.Y. Zhang, X.J. Yan, Y.W. Wang, Y.H. Deng, X.G. Wang, Polymer 49 (2008) 5504.
36] A. Cihaner, F. Algi, Electrochim. Acta 54 (2009) 1702.
37] T. Jeevananda, Siddaramaiah, S. Seetharamu, S. Saravanan, D’SouzaF L., Synth.
Met. 140 (2004) 247.
This work has been supported in part by the National Natural
Science Foundation of China (No. 21104024 and 50973038), and the
National 973 Project (No. S2009061009). We acknowledge fund-
ing from the Nanoscale Science & Engineering Center for High-rate
Nanomanufacturing (grant NSF EEC 0832785). We are extremely
grateful for Dr. Fangfei Li from Jilin University for constructive com-
ments and discussions.
[38] E. Conwell, C.B. Duke, A. Paton, S. Leyadev, J. Chem. Phys. 88 (1988) 3955.
[
39] J. Honzl, M. Tlustakova, Tetrahedron 25 (1969) 3641.
[
40] L.B. He, D.M. Chao, X.T. Jia, H.T. Liu, L. Yao, X.C. Liu, C. Wang, J. Mater. Chem. 21
(
2011) 1852.
[41] Y. Furudawa, F. Ueda, Y. Hyodo, I. Harada, Macromolecules 21 (1988) 1297.
[42] M. Malta, E.R. Gonzalez, R.M. Torresi, Polymer 43 (2002) 5895.