A R T I C L E S
Kawano et al.
erwise transient species by chemical modification. Many of those
species have been stabilized, some of which have been isolated
under ambient conditions5 and even structurally fully character-
ized by X-ray crystallographic techniques. Such “direct”
observations, reinforced by theoretical predictions, have revealed
many previously unknown aspects of those species.
are still not stable enough to be isolated under ambient
conditions. Thus, it is still not possible to obtain a crystal of
stable triplet carbene for X-ray crystallographic analysis.
A very powerful technique to characterize the crystal structure
of highly elusive species emerges. This technique enables us
to observe in situ the molecular structure of unstable species
generated photochemically in a single crystal of an appropriate
precursor molecule to the extent that the crystallinity of the
sample is retained. Starting with single-crystal-to-single-crystal
reaction of various organic and organometallic compounds, the
in situ method has been successfully used to characterize the
molecular structures of very unstable species such as radical
pairs from hexaarylbiimidazole derivatives,13 triplet nitrenes,14
the photoinduced metastable state of a transition-metal nitrosyl
complex,15 and triplet excited states of [Pt2(H2P2O5)4]4- ion16
and [Rh2(1,3-diisocyanopropane)4]2+ ion.17
Carbenes became very attractive target molecules. Carbenes
are neutral, divalent derivatives of carbon. The carbene atom
has two electrons, not involved in bonding, that can be spin-
paired (singlet state) or unpaired (triplet state). Thus, the species
presents many challenging issues, not present in other reactive
species, such as the effect of structure on singlet-triplet energy
gap, chemical reactivities of each state, intersystem-crossing
efficiency, and so on.6 A great deal of spectroscopical7 as well
as theoretical works8 have been devoted to these issues and have
revealed the nature of the species in considerable detail.
Simultaneously, efforts to stabilize and isolate those highly
elusive species have also been made.9 Singlet carbenes undergo
thermodynamic stabilization more easily than the triplet states
and are stabilized with substituents such as R2N and R2P. Some
of these species are thermodynamically more stable than their
alkene dimerization products. The structures of those carbenes
are fully characterized by X-ray crystallographic analysis.10,11
Stable forms of triplet carbenes are more difficult to obtain.9
The dimerization reactions of triplet methylene, phenylcarbene,
and vinylcarbene are exothermic by 728, 628, and 610 kJ/mol,
respectively, indicating that conjugation with π systems will
not lead to thermodynamically stable triplet carbenes.9g Hence,
kinetic stabilization is a more promising approach to persistent
triplet carbenes.
In light of the fact that even the structures of very persistent
triplet diphenylcarbenes (DPCs) have been characterized only
by “indirect” spectroscopic methods,18 it is very tempting to
use this in situ method to characterize the structures of triplet
carbenes. The fact that carbenes can be efficiently and cleanly
generated by photolysis of precursor diazo compounds19 makes
the idea feasible. Actually, we have shown that triplet bis(2,4,6-
trichlorophenyl)carbene (1), photolytically generated in a single
crystal of the corresponding precursory diazo compound, could
be structurally characterized by using this method. In this way,
the molecular structure of triplet diphenylcarbene was revealed
for the first time.20
As an extension of this approach, we have carried out the in
situ observation of photoinduced DPCs in single crystals of a
series of diphenyldiazomethanes (DDMs) at low temperatures.
The diazo precursors were chosen so as to generate triplet DPCs
with different stabilities (Chart 1). Those chosen are bis(2,4,6-
tribromophenyl)diazomethane (2-N2),21 bis(2,6-dibromo-4-meth-
ylphenyl)diazomethane (3-N2),21 bis(2,6-dibromo-4-tert-bu-
tylphenyl)diazomethane (4-N2),21 and (2,4,6-tribromophenyl)-
(2,6-dimethyl-4-tert-butylphenyl)diazomethane (5-N2),21 in
addition to bis(2,4,6-trichlorophenyl)diazomethane (1-N2),22 all
A great effort to stabilize triplet carbenes has been made, by
which fairly stable ones have been realized.12 However, they
(5) See, for instance: (a)West, R.; Fink, M. J.; Michl, J. Science 1981, 214,
1343. (b) Okazaki, R.; West, R. AdV. Organomet. Chem. 1996, 39, 231.
(c) Kira, M.; Iwamoto, T. J. Organomet. Chem. 2000, 611, 236. (d)
Weidenbruch, M. In The Chemistry of Organic Silicon Compounds;
Rapporport, Z., Apeloig, Y., Eds.; John Wiley & Sons: Chichester, 2001;
Vol 3, p 391. (e) Sekiguch, A.; Lee, V. Y. Chem. ReV. 2003, 103, 1429.
(6) For reviews of general reactions of carbenes, see: (a) Kirmse, W. Carbene
Chemistry, 2nd ed.; Academic Press: New York, 1971. (b) Carbenes, Vols.
1 and 2; Moss, R. A., Jones, M., Jr., Eds.; Wiley: New York, 1973 and
1975. (c) Carbene(oide), Carbine; Regitz, M. Ed.; Thieme: Stuttgart, 1989.
(7) For reviews of laser flash photolysis study of carbenes, see: (a) Moss, R.
S.; Turro, N. J. In Kinetics and Spectroscopy of Carbenes and Biradicals;
Platz, M. S., Ed.; Plenum Press: New York, 1990; pp 213-238. (b) Platz,
M. S.; Maloney, V. M. In Kinetics and Spectroscopy of Carbenes and
Biradicals; Platz, M. S., Ed.; Plenum Press: New York, 1990; pp 239-
352. (c) Moss, R. A. In AdVances in Carbene Chemistry; Brinker, U. H.,
Ed.; JAI Press: Greenwich, 1994; pp 59-88. (d) Jackson, J. E.; Platz, M.
S. In AdVances in Carbene Chemistry; Brinker, U. H., Ed.; JAI Press:
Greenwich, 1994; pp 89-160.
(8) For an excellent review on how to deal computationally with open-shell
species, see: Bally, T.; Borden, W. T. In ReViews in Computational
Chemistry; Lipowitz, K. B., Boyd, D. B., Eds.; Wiley: New York, 1998.
(9) (a) Regitz, M. Angew. Chem., Int. Ed. Engl. 1991, 30, 674. (b) Dagani, R.
Chem. Eng. News 1991, Jan 28, 19; 1994, May 2, 20. (c) Heinemann, C.;
Mu¨ller, T.; Apeloig, Y.; Schwartz, H. J. Am. Chem. Soc. 1996, 118, 2023.
(d) Beohme, C.; Frenking, G. J. Am. Chem. Soc. 1996, 118, 2039. (e)
Wentrup, C. Science 2001, 292, 1846. (f) Roth, H. D. Nature 2001, 412,
598. (g) Kirmse, W. Angew. Chem., Int. Ed. 2003, 42, 2117.
(10) Igau, A.; Gru¨tzmacher, H.; Baceiredo, A.; Bertrand, M. J. Am. Chem. Soc.
1988, 110, 6463. See, for review: (a) Bourissou, D.; Guerret, O.; Gabbai,
F. P.; Bertrand, G. Chem. ReV. 2000, 100, 39. (b) Bertrand, G. In ReactiVe
Intermediate Chemistry; Moss, A. M., Platz, M. S., Jones, M., Jr., Eds.;
Wiley: New York, 2004; pp 329-373.
(11) Arduengo, A. J., III; Harlow, R. L.; Kline, M. J. Am. Chem. Soc. 1991,
113, 361. See also: Arduengo, A. J., III. Acc. Chem. Res. 1999, 32, 913.
(12) (a) Tomioka, H. Acc. Chem. Res. 1997, 30, 315. (b) Tomioka, H. In
AdVances in Carbene Chemistry; Brinker, U., Ed.; JAI Press: Greenwich,
CT, 1998, Vol. 2, pp 175-214. (c) Tomioka, H. In AdVances in Strained
and Interesting Organic Molecules; Halton B., Ed.; JAI Press: Greenwich,
CT, 2000; Vol. 8, pp 83-112. (d) Tomioka, H. In Carbene Chemistry;
Bertrand G., Ed.; Fontis Media SA: Lausanne, 2002; pp 103-152.
(13) (a) Kawano, M.; Sano, T.; Abe, J.; Ohashi, Y. J. Am. Chem. Soc. 1999,
121, 8106. (b) Kawano, M.; Sano, T.; Abe, J.; Ohashi, Y. Chem. Lett. 2000,
1372. (c) Kawano, M.; Ozawa, Y.; Matsubara, K.; Imabayashi, H.; Mitsumi,
M.; Toriumi, K.; Ohashi, Y. Chem. Lett. 2002, 1130.
(14) Kawano, M.; Takayama, T.; Uekusa, H.; Ohashi, Y.; Ozawa, Y.; Matsubara,
K.; Imabayashi, H.; Mitsumi, M.; Toriumi, K. Chem. Lett. 2003, 922.
(15) (a) Coppens, P.; Novozhilova, I.; Kovalevsky, A. Chem. ReV. 2002, 102,
861. (b) Kawano, M.; Ishikawa, A.; Morioka, Y.; Tomizawa, H.; Miki, E.;
Ohashi, Y. J. Chem. Soc., Dalton Trans. 2000, 2425.
(16) (a) Yasuda, N.; Kanazawa, M.; Uekusa, H.; Ohashi, Y. Chem. Lett. 2002,
31, 1132-1133. (b) Ozawa, Y.; Terashima, M.; Mitsumi, M.; Toriumi,
K.; Yasuda, N.; Uekusa, H.; Ohashi, Y. Chem. Lett. 2003, 32, 62. (c) Kim,
C. D.; Pillet, S.; Wu, G.; Fullagar, W. K.; Coppens, P. Acta Crystallogr.
2002, A58, 133. (d) Novozhilova, I. V.; Volkov, A. V.; Coppens, P. J. Am.
Chem. Soc. 2003, 125, 1079. (e) Yasuda, N.; Uekusa, H.; Ohashi, Y. Bull.
Chem. Soc. Jpn. 2004, 77, 933.
(17) Novozhilova, I. V.; Volkov, A. V.; Coppens, P. Inorg. Chem. 2004, 43,
2299.
(18) For a general aspect of the reactions of diarylcarbenes, see: (a) Moss, R.
A.; Jones, M., Jr. Carbenes; John Wiley and Sons, Inc.: New York, 1973;
Vol. 1, pp 73-95. (b) Wentrup, C. In Methoden der Organischen Chemic
(Houben-Weyl); Regitz, M., Ed.; Thieme: Stuttgart, 1989; Vol. E19, pp
824-1021.
(19) Regitz, M.; Maas, G. Diazo Compounds. Properties and Syntheses;
Academic Press: Orlando, FL, 1986.
(20) Kawano, M.; Hirai, K.; Tomioka, H.; Ohashi, Y. J. Am. Chem. Soc. 2001,
123, 6904.
(21) (a) Tomioka, H.; Watanabe, T.; Hirai, K.; Furukawa, K.; Takui, T.; Itoh,
K. J. Am. Chem. Soc. 1995, 117, 6376. (b) Tomioka, H.; Hattori, M.; Hirai,
K.; Murata, S. J. Am. Chem. Soc. 1996, 118, 8723. (c) Tomioka, H.;
Watanabe, T.; Hattori, M.; Nomura, N.; Hirai, K. J. Am. Chem. Soc. 2002,
124, 474. (d) Hirai, K.; Iikubo, T.; Tomioka, H. Chem. Lett. 2002, 1226.
9
2384 J. AM. CHEM. SOC. VOL. 129, NO. 8, 2007