Angewandte Chemie International Edition
10.1002/anie.201803183
COMMUNICATION
be selectively modified by different formylglycine generating
enzymes. AtsB from Methanosarcina mazei (MM-AtsB) nearly
exclusively converts the CTAGR motif within a dual tag that also
contains a classical CTPSR site. In contrast, FGE almost exclu-
sively converts cysteine within CTPSR. We incorporated the
newly designed tag sequences into the DARPin E01 for proof-of-
concept bioconjugation experiments. The results indicate that
the consecutive enzymatic conversion by different formylglycine
generating enzymes allows for a successive introduction of two
distinct payloads into a target protein. Moreover, the model
protein retains its function despite the addition of the tag and the
enzymatic transformation.
54, 13420–13424.
[
13]
P. R. Spycher, C. A. Amann, J. E. Wehrmüller, D. R. Hurwitz, O.
Kreis, D. Messmer, A. Ritler, A. Küchler, A. Blanc, M. Béhé, P.
Walde, R. Schibli, ChemBioChem 2017, 18, 1923–1927.
[14]
[15]
[16]
K. von Figura, B. Schmidt, T. Selmer, T. Dierks, BioEssays 1998, 20,
505–510.
J. Landgrebe, T. Dierks, B. Schmidt, K. von Figura, Gene 2003, 316,
47–56.
T. Dierks, B. Schmidt, L. V Borissenko, J. Peng, A. Preusser, M.
Mariappan, K. von Figura, Cell 2003, 113, 435–444.
T. Dierks, M. R. Lecca, P. Schlotterhose, B. Schmidt, K. von Figura,
EMBO J. 1999, 18, 2084–2091.
M. A. Frese, T. Dierks, ChemBioChem 2009, 10, 425–427.
M. Knop, T. Q. Dang, G. Jeschke, F. P. Seebeck, ChemBioChem
2017, 18, 161–165.
[17]
[
[
18]
19]
[
20]
21]
M. Meury, M. Knop, F. P. Seebeck, Angew. Chem. Int. Ed. 2017, 56,
8115–8119.
[
P. G. Holder, L. C. Jones, P. M. Drake, R. M. Barfield, S. Bañas, G.
W. De Hart, J. Baker, D. Rabuka, J. Biol. Chem. 2015, 290, 15730–
Acknowledgements
15745.
[
22]
J. Peng, S. Alam, K. Radhakrishnan, M. Mariappan, M. G. Rudolph,
C. May, T. Dierks, K. von Figura, B. Schmidt, FEBS J. 2015, 282,
This work was supported by Deutsche Forschungsgemein-
schaft as part of the priority program SPP 1623 (DI 575/9-1, MU
3262–3274.
[23]
24]
[25]
T. L. Grove, K. H. Lee, J. St. Clair, C. Krebs, S. J. Booker,
Biochemistry 2008, 47, 7523–7538.
T. L. Grove, J. H. Ahlum, R. M. Qin, N. D. Lanz, M. I. Radle, C.
Krebs, S. J. Booker, Biochemistry 2013, 52, 2874–2887.
A. Benjdia, S. Subramanian, J. Leprince, H. Vaudry, M. K. Johnson,
O. Berteau, J. Biol. Chem. 2008, 283, 17815–17826.
O. Berteau, A. Guillot, A. Benjdia, S. Rabot, J. Biol. Chem. 2006,
281, 22464–22470.
P. J. Goldman, T. L. Grove, L. A. Sites, M. I. McLaughlin, S. J.
Booker, C. L. Drennan, Proc. Natl. Acad. Sci. 2013, 110, 8519–8524.
C. Szameit, C. Miech, M. Balleininger, B. Schmidt, K. von Figura, T.
Dierks, J. Biol. Chem. 1999, 274, 15375–15381.
2286/6-1, SE 609/15-1) and, initially, by grants DI 575/5-2 and
[
DI 575/5-3 (to T.D.). The authors acknowledge the input of Prem
Kumar Sinha, Klaus Schneider and Karthikeyan Radhakrishnan
at the beginning of this project. The pDB1282-isc plasmid was
provided by Dennis Dean (VirginiaTech, USA) and the pET14b-
mtbFGE-His6 plasmid by David Rabuka (Redwood Bioscience,
Emeryville, USA). Genomic DNA of M. mazei was obtained from
the Institute of Microbiology and Genetics (University of Göttin-
gen, Germany).
[26]
[27]
[28]
[29]
[30]
[31]
C. Miech, T. Dierks, T. Selmer, K. von Figura, B. Schmidt, J. Biol.
Chem. 1998, 273, 4835–4837.
C. Marquordt, Q. Fang, E. Will, J. Peng, K. von Figura, T. Dierks, J.
Biol. Chem. 2003, 278, 2212–2218.
Conflict of Interest
P. Sungkeeree, W. Whangsuk, R. Sallabhan, J. Dubbs, S.
Mongkolsuk, S. Loprasert, Process Biochem. 2017, 63, 60-65.
Q. Fang, J. Peng, T. Dierks, J. Biol. Chem. 2004, 279, 14570–14578.
R. A. Kudirka, R. M. Barfield, J. M. McFarland, P. M. Drake, A.
Carlson, S. Banas, W. Zmolek, A. W. Garofalo, D. Rabuka, ACS
Med. Chem. Lett. 2016, 7, 994–998.
D. York, J. Baker, P. G. Holder, L. C. Jones, P. M. Drake, R. M.
Barfield, G. T. Bleck, D. Rabuka, BMC Biotechnol. 2016, 16:23.
P. Agarwal, R. Kudirka, A. E. Albers, R. M. Barfield, G. W. De Hart, P. M.
Drake, L. C. Jones, D. Rabuka, Bioconj. Chem. 2013, 24, 846–851.
R. Kudirka, R. M. Barfield, J. McFarland, A. E. Albers, G. W. De
Hart, P. M. Drake, P. G. Holder, S. Banas, L. C. Jones, A. W.
Garofalo, D. Rabuka, Chem. Biol. 2015, 22, 293–298.
A. Benjdia, S. Subramanian, J. Leprince, H. Vaudry, M. K. Johnson,
O. Berteau, FEBS J. 2010, 277, 1906-1920.
J. S. Rush, C. R. Bertozzi, J. Am. Chem. Soc. 2008, 130, 12240–12241.
B. L. Carlson, E. R. Ballister, E. Skordalakes, D. S. King, M. A.
Breidenbach, S. A. Gilmore, J. M. Berger, C. R. Bertozzi, J. Biol.
Chem. 2008, 283, 20117–20125.
D. Steiner, P. Forrer, A. Plückthun, J. Mol. Biol. 2008, 382, 1211-1227.
H. K. Binz, M. T. Stumpp, P. Forrer, P. Amstutz, A. Plückthun, J.
Mol. Biol. 2003, 332, 489–503.
The authors declare no competing financial interest.
[32]
[
33]
Keywords: bioconjugation • enzyme catalysis • formylglycine •
peptides • radical-SAM proteins
[34]
[35]
[36]
[
[
1]
2]
P. Agarwal, C. R. Bertozzi, Bioconj. Chem. 2015, 26, 176–192.
P. G. Holder, D. Rabuka in Biosimilars of Monoclonal Antibodies: A
Practical Guide to Manufacturing, Preclinical, and Clinical
Development (Eds.: C. Liu, K. J. Morrow Jr.), John Wiley & Sons,
Inc., 2016, pp. 591–640.
[37]
[
3]
F. Tian, Y. Lu, A. Manibusan, A. Sellers, H. Tran, Y. Sun, T. Phuong, R.
Barnett, B. Hehli, F. Song, M. J. DeGuzman, S. Ensari, J. K. Pinkstaff, L.
M. Sullivan, S. L. Biroc, H. Cho, P. G. Schultz, J. DiJoseph, M. Dougher,
D. Ma, R. Dushin, M. Leal, L. Tchistiakova, E. Feyfant, H.-P. Gerber, P.
Sapra, Proc. Natl. Acad. Sci. 2014, 111, 1766–1771.
[
[
38]
39]
[4]
[5]
[6]
H. Neumann, FEBS Lett. 2012, 586, 2057–2064.
Q. Wang, A. R. Parrish, L. Wang, Chem. Biol. 2009, 16, 323–336.
I. S. Carrico, B. L. Carlson, C. R. Bertozzi, Nat. Chem. Biol. 2007, 3,
[
[
40]
41]
3
21–322.
R. R. Beerli, T. Hell, A. S. Merkel, U. Grawunder, PLoS One 2015,
0, 1–17.
[42]
[43]
[44]
R. Tamaskovic, M. Simon, N. Stefan, M. Schwill, A. Plückthun,
Methods Enzymol. 2012, 503, 101-134.
Y. L. Boersma, G. Chao, D. Steiner, K. D. Wittrup, A. Plückthun, J.
Biol. Chem. 2011, 286, 41273–41285.
C. Zahnd, M. Kawe, M. T. Stumpp, C. De Pasquale, R. Tamaskovic,
G. Nagy-Davidescu, B. Dreier, R. Schibli, H. K. Binz, R. Waibel, A.
Plückthun, Cancer Res. 2010, 70, 1595–1605.
[
7]
1
[
[
8]
9]
K. Strijbis, E. Spooner, H. L. Ploegh, Traffic 2012, 13, 780–789.
D. Schumacher, J. Helma, F. A. Mann, G. Pichler, F. Natale, E.
Krause, M. C. Cardoso, C. P. R. Hackenberger, H. Leonhardt,
Angew. Chem. Int. Ed. 2015, 54, 13787–13791.
[
10]
11]
P. Wu, W. Shui, B. L. Carlson, N. Hu, D. Rabuka, J. Lee, C. R.
Bertozzi, Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 3000–5.
M. R. Levengood, X. Zhang, J. H. Hunter, K. K. Emmerton, J. B.
Miyamoto, T. S. Lewis, P. D. Senter, Angew. Chem. Int. Ed. 2017,
[
45]
A. Benjdia, G. Dehò, S. Rabot, O. Berteau, FEBS Lett. 2007, 581,
1009–1014.
[
[
[
46]
47]
N. J. Greenfield, Nat. Protoc. 2009, 1, 2527–2535.
F. Selis, G. Focà, A. Sandomenico, C. Marra, C. Di Mauro, G.
Saccani Jotti, S. Scaramuzza, A. Politano, R. Sanna, M. Ruvo, G.
Tonon, Int. J. Mol. Sci. 2016, 17, 491.
56, 733–737.
[12]
V. Siegmund, S. Schmelz, S. Dickgiesser, J. Beck, A. Ebenig, H.
Fittler, H. Frauendorf, B. Piater, U. A. K. Betz, O. Avrutina, A.
Scrima, H.-L. Fuchsbauer, H. Kolmar, Angew. Chem. Int. Ed. 2015,
This article is protected by copyright. All rights reserved.