CHATTOPADHYAY ET AL.
11
(E)‐stilbene catalysed by Fe3O4@dopa@MnL1 and
Fe3O4@dopa@FeL1 nanocatalysts with the aim of examining
their activity after five runs (Figure 10). After each run the
catalysts were recovered solely by application of a magnet.
Then these catalysts were washed with acetonitrile to
remove any absorbed products and then dried. The used cat-
alysts were further characterized using FT‐IR spectroscopy
(Figure S10, supporting information) and TEM (Figure 11).
The results clearly indicate that the catalysts are stable with
very good activity in the epoxidation reaction runs.
[7] J. Adhikary, A. Datta, S. Dasgupta, A. Chakraborty, M. I. Menéndez,
T. Chattopadhyay, RSC Adv. 2015, 5, 92634.
[8] D. Zhang, C. Zhou, Z. Sun, L. Z. Wu, C. H. Tung, T. Zhang, Nanoscale
2012, 4, 6244.
[9] M. Mazur, A. Barras, V. Kuncser, A. Galatanu, V. Zaitzev, K. V. Turcheniuk,
P. Woisel, J. Lyskawa, W. Laure, A. Siriwardena, R. Boukherrouba,
S. Szunerits, Nanoscale 2013, 5, 2692.
[10] S. Singamaneni, V. N. Bliznyuk, C. Binek, E. Y. Tsymbal, J. Mater. Chem.
2011, 21, 16819.
[11] V. Polshettiwar, B. Baruwati, R. S. Varma, Green Chem. 2009, 11, 127.
[12] S.Shylesh,V.Schunemann,W.R.Thiel,Angew.Chem.Int. Ed.2010,49,3428.
[13] M. B. Gawande, A. K. Rathi, I. D. Nogueira, R. S. Varma, P. S. Branco,
Green Chem. 2013, 15, 1895.
4
|
CONCLUSIONS
[14] M. B. Gawande, P. S. Branco, R. S. Varma, Chem. Soc. Rev. 2013, 42, 3371.
[15] E. P. Talsi, K. P. Bryliakov, Coord. Chem. Rev. 2012, 256, 1418.
In summary, we have found that ligand H2L3, formed from treat-
ment of 2,6‐diformyl‐4‐methylphenol with 1,1′‐
[16] T. Chattopadhyay, S. Islam, M. Nethaji, A. Majee, D. Das, J. Mol. Catal. A
2007, 267, 255.
dimethylethylenediamine, renders the most efficient Mn(III)
and Fe(III) Schiff base complexes for the epoxidation of alkenes
both in homogeneous and heterogeneous catalysis. Density
functional theory calculations confirm experimental results and
suggest that the efficiency of the catalysts is related to the stabil-
ity of MnV═O or FeV═O intermediates which form during the
catalytic process in the presence of PhIO. Here we have adapted
an economically workable and energy efficient catalytic process
using MnL1 or FeL1 (L1 comes from (R)‐1,2‐diaminopropane)
complexes over magnetically separable nanoparticles for the
selective epoxidation of alkenes at room temperature. The enan-
tiomeric excess epoxide yields clearly show the retention of chi-
rality at the backbone of the catalysts after addition with
magnetically separable nanoparticles. The easy operation, the
stability of catalysts, the use of cheap and mild magnetic
nanoparticles as support, the easy recoverability and reusabil-
ity of the catalysts, along with the high epoxide yield make
them an environmentally acceptable and greener alternative
to other reported catalytic systems for alkene epoxidation.
Above all, we can consider that these novel catalytic systems
would find applications in several other industrially significant
catalytic processes as well as in general synthetic organic
transformations due to their high enantiomeric excess yield.
[17] T. Chattopadhyay, D. Das, J. Coord. Chem. 2009, 62, 845.
[18] Collaborative Computational Project, Number 4, Acta Crystallogr. D 1994, 50,
760.
[19] Z. Otwinowski, W. Minor, Methods Enzymol. 1997, 276, 307.
[20] G. M. Sheldrick, Acta Crystallogr. A 2008, 64, 112.
[21] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R.
Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji,
M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L.
Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida,
T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, Jr. J. A. Montgomery, J. E.
Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N.
Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant,
S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J.
B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O.
Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K.
Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S.
Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski,
D. J. Fox, Gaussian, Inc., Wallingford, CT, 2009.
[22] J. Tomasi, R. Cammi, J. Comput. Chem. 1996, 16, 1449.
[23] J. Tomasi, M. Persico, Chem. Rev. 1994, 94, 2027.
[24] S. Sahu, L. R. Widger, M. G. Quesne, S. P. de Visser, H. Matsumura, P. Moëne‐
Loccoz, M. A. Siegler, D. P. Goldberg, J. Am. Chem. Soc. 2013, 135, 10590.
[25] M. Katsuda, M. Mitani, Y. Yoshioka, J. Biophys, Chem 2012, 3, 111.
[26] A. B. Becke, Phys. Rev. A 1988, 38, 3098.
[27] A. B. Becke, J. Chem. Phys. 1993, 98, 5648.
[28] C. Lee, W. Yamg, R. G. Parr, Phys. Rev. B 1988, 37, 785.
[29] J. Adhikary, A. Guha, T. Chattopadhyay, D. Das, Inorg. Chim. Acta 2013, 406, 1.
ACKNOWLEDGMENTS
[30] S.‐C. Cheng, C.‐W. Chang, H.‐H. Wei, G.‐H. Lee, Y. Wang, J. Chin. Chem.
Soc. 2003, 50, 41.
Financial support by the Science and Engineering Research
Board (a statutory body under DST, New Delhi, India; F. no.
SB/FT/CS‐185/2013 dt. 30‐06‐2014) is gratefully acknowl-
edged by T.C. We also thank DST, New Delhi, for providing
single‐crystal diffractometer facility at the Department of Chem-
istry, University of Calcutta, through DST‐FIST programme.
SUPPORTING INFORMATION
Additional Supporting Information may be found online in
the supporting information tab for this article.
How to cite this article: Chattopadhyay, T.,
Chakraborty, A., Dasgupta, S., Dutta, A., Menéndez,
M. I., and Zangrando, E. (2016), A route to magneti-
cally separable nanocatalysts: Combined experimental
and theoretical investigation of alkyl substituent role
in ligand backbone towards epoxidation ability, Appl
REFERENCES
[1] G. D. Faveri, G. Ilyashenkoa, M. Watkinson, Chem. Soc. Rev. 2011, 40, 1722.
[2] Y. Zhu, Q. Wang, R. G. Cornwall, Y. Shi, Chem. Rev. 2014, 114, 8199.
[3] T. Katsuki, Coord. Chem. Rev. 1995, 140, 189.
[4] L. Canali, D. C. Sherrinton, Chem. Soc. Rev. 1999, 28, 85.
[5] C. Baleizão, H. Garcia, Chem. Rev. 2006, 106, 3987.
[6] Y. Kobayashi, S. Inukai, N. Asai, M. Oyamada, S. Ikegawa, Y. Sugiyama,
H. Hamamoto, T. Shioiri, M. Matsugi, Tetrahedron Asymm 2014, 25, 1209.