Full Papers
100–103; c) A. Gꢆmez-Baraibar, C. Reichert, C. Mꢅgge, S. H. Seger, H.
Grçger, R. Kourist, Angew. Chem. Int. Ed. 2016, 55, 14823–14827; Angew.
Chem. 2016, 128, 15043–15047.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
General Procedure for the Conversion of b-Ketonitriles 6a–
11a Into b-Ketoamides 6d-11d in a Sequential Fashion
[8] The only examples of concurrent chemo- and biocatalysis include: a) O.
Verho, J.-E. Bꢇckvall, J. Am. Chem. Soc. 2015, 137, 3996–4009; b) F. G.
Mutti, A. Orthaber, J. H. Schrittwieser, J. G. de Vries, R. Pietschnig, W.
Kroutil, Chem. Commun. 2010, 46, 8046–8048; c) C. A. Denard, H. Huang,
M. J. Bartlett, L. Lu, Y. Tan, H. Zhao, J. F. Hartwig, Angew. Chem. Int. Ed.
2014, 53, 465–469; Angew. Chem. 2014, 126, 475–479; d) B. Bechi, S.
Herter, S. McKenna, C. Riley, S. Leimkꢅhler, N. J. Turner, A. J. Carnell,
Green Chem. 2014, 16, 4524–4529; e) N. Rꢃos-Lombardꢃa, C. Vidal, E.
Liardo, F. Morꢃs, J. Garcꢃa-ꢈlvarez, J. Gonzꢉlez-Sabꢃn, Angew. Chem. Int.
Ed. 2016, 55, 8691–8695; Angew. Chem. 2016, 128, 8833–8837; f) C. A.
Denard, M. J. Barlett, Y. Wang, L. Lu, J. F. Hartwig, H. Zhao, ACS Catal.
2015, 5, 3817–3822; g) For a very recent review on tandem catalysis,
see: F. Rudroff, M. D. Mihovilovic, H. Grçger, R. Snajdrova, H. Iding, U. T.
Bornscheuer, Nat. Catal. 2018, 1, 12–22.
In
a 2.0 mL Eppendorf tube, the corresponding b-ketonitrile
(100 mM), KRED (100% w/w; mg of enzyme powder per mg of
substrate), i-PrOH (10% v/v) and 125 mM phosphate buffer pH 7.0
(also containing 1.25 mM MgSO4, 1.0 mM NADP+) were added. The
resulting reaction mixture was shaken at 250 rpm and 608C for
24 h. After this time, complex 1 (6.0 mol%) was added and the
reaction was left stirring overnight at 608C. Then, the mixture was
extracted with ethyl acetate (2ꢂ500 mL), the organic layers were
separated by centrifugation (90 s, 13000 rpm), combined, and
finally dried over Na2SO4. The degree of conversion was measured
by 1H-NMR and it was complete in all cases. The enantiomeric
excess of the corresponding product was determined by chiral
HPLC or GC.
[9] Commercially available bacterium Rhodococcus rhodochrous IFO 15564
displays both nitrile hydratase/amidase activity. a) H. Kakeya, N. Sakai, T.
Sugai, H. Ohta, Tetrahedron Lett. 1991, 32, 1343–1346; b) R. Morꢉn-
Ramallal, R. Liz, V. Gotor, Org. Lett. 2007, 9, 521–524.
[10] E. Liardo, N. Rꢃos-Lombardꢃa, F. Morꢃs, J. Gonzꢉlez-Sabꢃn, F. Rebolledo,
Org. Lett. 2016, 18, 3366–3369.
[11] R. Gonzꢉlez-Fernꢉndez, P. Crochet, V. Cadierno, Org. Lett. 2016, 18,
6164–6167.
[12] Higher amounts of the amidase inhibitor diethylphosphoramidate
(DEPA) were not effective due to microorganism inactivation.
[13] For a recent review on Ru-catalyzed nitrile hydration, see: R. Garcꢃa-
ꢈlvarez, J. Francos, E. Tomꢉs-Mendivil, P. Crochet, V. Cadierno, J.
Organomet. Chem. 2014, 771, 93–104.
17 Acknowledgements
18
19 We are indebted to the MINECO of Spain (CTQ2013-40591-P and
20 CTQ2016-75986-P) and the Gobierno del Principado de Asturias
21 (Project GRUPIN14-006) for financial support. E. Liardo acknowl-
22 edges funding from the European Union’s Horizon 2020 MSCA
23 ITN-EID program (grant agreement No 634200). The authors also
[14] Three ruthenium complexes, known for their ability to hydrate nitriles
under mild conditions, were considered, i.e.: the bis(allyl)-ruthenium(IV)
complex [RuCl2(h3 :h3-C10H16)(PMe2OH)] (1; C10H16 =2,7-dimethylocta-
2,6-diene-1,8-diyl) and the arene ruthenium(II) derivatives [RuCl2(h6-p-
cymene)(PR2OH)] (R=Me (1’), 4-C6H4F (1’’)): a) E. Tomꢉs-Mendivil, F. J.
Suꢉrez, J. Dꢃez, V. Cadierno, Chem. Commun. 2014, 50, 9661–9664; b) E.
Tomꢉs-Mendivil, V. Cadierno, M. I. Menꢄndez, R. Lꢆpez, Chem. Eur. J.
2015, 21, 16874–16886; c) R. Gonzꢉlez-Fernꢉndez, P. J. Gonzꢉlez-Liste, J.
Borge, P. Crochet, V. Cadierno, Catal. Sci. Technol. 2016, 6, 4398–4409;
d) E. Tomꢉs-Mendivil, J. Francos, R. Gꢆnzalez-Fernꢉndez, P. J. Gonzꢉlez-
Liste, J. Borge, V. Cadierno, Dalton Trans. 2016, 45, 13590–13603; e) R.
Gonzꢉlez-Fernꢉndez, P. Crochet, V. Cadierno, M. I. Menꢄndez, R. Lꢆpez,
Chem. Eur. J. 2017, 23, 15210–15221. A parametric study of the catalytic
activity of these ruthenium complexes in the hydration of 2 is shown in
Table S1 in the SI.
[15] The concentration was lowered from the reported 330 mM (ref. 14a) to
200 mM, to fit the maximum concentration tolerated by KREDs for an
efficient performance.
[16] The stability of the KRED was also evaluated in the presence of growing
percentages of the metal complex 1 (up to 20% mol). As a result, the
enzymatic activity remained unaltered in all the cases.
[17] Orthogonal tandem catalysis is defined as a one-pot sequence of
reactions involving two or more functionally distinct catalytic mecha-
nisms, promoted by two or more different catalysts that are present
from the outset. See: T. L. Lohr, T. J. Marks, Nat. Chem. 2015, 7, 477–482.
[18] The Codexꢁ KRED Screening Kit (Codexis, Reedwood City, USA) contains
24 ketoreductases. For the full panel of enzymatic screenings, see
section 3 in the SI.
[19] A. Weckbecker, W. Hummel, Biocatal. Biotransform. 2006, 24, 380–389.
[20] B. Kosjek, W. Stampfer, M. Pogorevc, W. Goessler, K. Faber, W. Kroutil,
Biotechnol. Bioeng. 2004, 86, 55–62.
¨
24 thank Dr. Martin Schu¨rmann (InnoSyn) and Prof. Harald Groger
25 (Bielefeld University) for the generous gift of the KRED of
26 Rhodococcus ruber and Lactobacillus kefir, respectively.
27
28
29 Conflict of Interest
30
31 The authors declare no conflict of interest.
32
33
Keywords: One-pot processes · concurrent tandem catalysis ·
34
35
36
metal catalyst · chiral b-hydroxyamides · tembamide
37
38
[1] a) A. Bruggink, R. Schoevaart, T. Kieboom, Org. Process Res. Dev. 2003, 7,
622–640; b) J. M. Lee, Y. Na, H. Han, S. Chang, . Chem. Soc. Rev. 2004,
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
33, 302–312; c) P. A. Wender, B. L. Miller, Nature 2009, 460, 197–201.
[2] a) E. Ricca, B. Brucher, J. H. Schrittwieser, Adv. Synth. Catal. 2011, 353,
2239–2262; b) J. Muschiol, C. Peters, N. Oberleitner, M. D. Mihovilovic,
U. T. Bornscheuer, F. Rudroff, Chem. Commun. 2015, 51, 5798–5811;
c) S. P. France, L. J. Hepworth, N. J. Tuner, S. L. Flitsch, ACS Catal. 2017,
7, 710–724; d) J. H. Schrittwieser, S. Velikogne, M. Hall, W. Kroutil, Chem.
Rev. 2017, 218, 270–348.
[3] a) J.-C. Wasilke, S. J. Obrey, R. T. Baker, G. C. Bazana, Chem. Rev. 2005,
105, 1001–1020; b) A. Dhakshinamoorthy, H. Garcꢃa, ChemSusChem
2014, 7, 2392–2410; c) J. Lu, J. Dimroth, M. Weck, J. Am. Chem. Soc.
2015, 137, 12984–12989; d) For some references on Ru, see: C. Bruneau,
S. Dꢄrien, P. H. Dixneuf in Metal catalyzed cascade reactions (Ed.: T. J. J.
Mꢅller), Springer, Berlin, 2006, pp. 295–326.
[21] b-Ketoamides exist in solution as a mixture of keto and enol tautomers.
For clarity, only the keto form is drawn in this work.
[22] The enzymatic system seemed to exert partial inhibition on 1, leading
to incomplete nitrile hydration at 3 mol% of catalyst loading.
[23] We have previously reported coupled chemoenzymatic one-pot/two-
step reactions in aqueous media: a) N. Rꢃos-Lombardꢃa, C. Vidal, M.
Cocina, F. Morꢃs, J. Garcꢃa-ꢈlvarez, J. Gonzꢉlez-Sabꢃn, Chem. Commun.
2015, 51, 10937–10940. b) M. J. Rodrꢃguez-ꢈlvarez, N. Rꢃos-Lombardꢃa,
S. Schumacher, D. Pꢄrez-Iglesias, F. Morꢃs, V. Cadierno, J. Garcꢃa-ꢈlvarez,
J. Gonzꢉlez-Sabꢃn, ACS Catal. 2017, 7, 7753–7759.
[24] pKa =7.84 (H2O) for 13a according to: J. R. Dehli, V. Gotor, J. Org. Chem.
2002, 67, 6816–6819. For an extensive overview about the DYRKR
concept, see: G. A. Applegate, D. B. Berkowitz, Adv. Synth. Catal. 2015,
357, 1619–1632.
[4] Metal catalyzed reactions in Water (Eds.: P. H. Dixneuf, V. Cadierno),
Wiley-VCH Verlag Gmbh & Co, Weinheim, 2013.
[5] H. Grçger, W. Hummel, Curr. Opin. Chem. Biol. 2014, 19, 171–179.
[6] a) U. T. Bornscheuer, Angew. Chem. Int. Ed. 2015, 55, 4372–4373; b) C.
Schmidt-Dannert, F. Lꢆpez-Gallego, Microb. Biotechnol. 2016, 9, 601–
609; c) S. Schmidt, K. Castiglione, R. Kourist, Chem. Eur. J. 2018, 24,
1755–1768.
[7] For chemoenzymatic processes using compartmentalized or encapsu-
lated metal catalysts, see: a) V. Kçhler, Y. M. Wilson, M. Dꢅrrenberger, D.
Ghislieri, E. Churakova, T. Quinto, L. Knçrr, D. Hꢇussinger, F. Hollmann,
N. J. Turner, T. R. Ward, Nat. Chem. 2013, 5, 93–99; b) Z. J. Wang, K. N.
Clary, R. G. Bergman, K. N. Raymond, F. D. Toste, Nat. Chem. 2013, 5,
ChemCatChem 2018, 10, 1–8
6
ꢀ 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
ÞÞ
These are not the final page numbers!