chemical and physical properties of the nonnatural nucleoside
dictate the specific use. We are interested in nonnatural
nucleosides that are redox active and of potential use as
probes for electrochemical-based hybridization assays and
for DNA-mediated charge-transfer studies. To date, we have
prepared oligodeoxynucleotides labeled at the C5-position
of uridine,37-40 the C8-position of 2′-deoxyadenosine,41 5′-
terminal phosphate,42,43 and the 5′-position of thymidine44,45
with spectroscopic and redox-active chromophores. Non-
natural nucleosides, where the base is completely substituted
by a redox probe, are less common. Phenothiazine (PTZ) is
a low-potential reductant (PTZ+•/PTZ; 0.59 V vs SCE)46 that
possesses a spectroscopically well-characterized one-electron
oxidized product, PTZ+•.47,48 This redox probe has also been
previously used to study photoinduced charge-transfer reac-
tions.46,48,49 Herein we describe the synthesis and character-
ization of a novel phenothiazine-nucleoside analogue and the
incorporation of this nonnatural PTZ-nucleoside in oligo-
deoxynucleotides.
Scheme 1. Synthesis of a Phenothiazine Nucleoside Analogue
Possessing a C-C Linkagea
The phenothiazine 2′-deoxynucleoside analogue, 1-(â)-
(10-methyl-phenothiazin-3-yl)-5-(O-p-toluoyl)-2-deoxy-D-ri-
bose, investigated possesses a carbon-carbon linkage (see
Figure 1). 3,5-Di-toluoyl-1-R-chloro-2-deoxy-D-ribose, 3, was
a Reagents: (a) bromine, acetic acid/sodium acetate, 27 °C, 2 h,
66% yield; (b) Mg, THF, 25 °C, 1.6 h, 13% yield; (c) NaOMe,
MeOH, 25 °C, 1.5 h, 24% yield or (i) NaOMe, MeOH, 25 °C, 8 h
and (ii) p-toluoyl chloride, pyridine, 25 °C, 16 h, 27% total yield;
(d) DIPEA, ACN, 2-cyanoethyl-N,N′-diisopropyl-chlorophosphor-
amidite, 25 °C, 1 h, >95% yield (TLC).
with HCl.50-52 1-(â)-(10-methyl-phenothiazin-3-yl)-5-(O-p-
toluoyl)-2-deoxy-D-ribose, 5, was prepared as shown in
Scheme 1. Bromination of 10-methyl-phenothi-
azine, 1, in acetic acid/sodium acetate buffer gave 3-bromo-
10-methyl-phenothiazine, 2, in 66% yield.53 Next, the Grig-
nard of phenothiazine was coupled with 1-chloro-3,5-di-(O-
p-toluoyl)-2-deoxy-D-ribose, 3. Among the various reaction
solvents (ethyl ether, toluene, and THF), temperatures (25,
40, and 70 °C), and time scales (1, 2, 6, and 12 h) used for
the Grignard reaction, only THF at refluxing temperature,
70 °C, yielded the phenothiazine-derivatized Grignard re-
agent within 2 h. This reaction condition reflects the
relatively lower reactivity of the aryl bromide toward
magnesium compared to that of an alkyl bromide. The
1-(R,â)-(10-methyl-phenothiazin-3-yl)-3,5-di(O-p-toluoyl)-
Figure 1. Chemical structure of 1-(â)-(10-methyl-phenothiazin-
3-yl)-5-(O-p-toluoyl)-2-deoxy-D-ribose.
first prepared by treating 2-deoxy-D-ribose with anhydrous
HCl gas in methanol for 2 h and then protecting the 3,5-
hydroxyl groups with p-toluoyl chloride followed by reaction
(33) Guckian, K. M.; Schweitzer, B. A.; Ren, R. X.-F.; Sheils, C. J.;
Tahmassebi, D. C.; Kool, E. T. J. Am. Chem. Soc. 2000, 122, 2213-2222.
(34) Dzantiev, L.; Alekseyev, Y. O.; Morales, J. C.; Kool, E. T.; Romano,
L. J. Biochemistry 2001, 40, 3215-3221.
(35) Matray, T. J.; Kool, E. T. J. Am. Chem. Soc. 1998, 120, 6191-
6192.
(36) Schweitzer, B. A.; Kool, E. T. J. Org. Chem. 1994, 59, 7238-
7242.
(37) Khan, S. I.; Beilstein, A. E.; Grinstaff, M. W. Inorg. Chem. 1999,
38, 418-419.
(46) Mecklenburg, S. L.; Peek, B. M.; Schoonover, J. R.; McCafferty,
D. G.; Wall, C. G.; Erickson, B. W.; Meyer, T. J. J. Am. Chem. Soc. 1993,
115, 5479-5495.
(47) Mecklenburg, S. L.; McCafferty, D. G.; Schoonover, J. R.; Peek,
B. M.; Erickson, B. W.; Meyer, T. J. Inorg. Chem. 1994, 33, 2974-2983.
(48) McCafferty, D. G.; Friesen, D. A.; Danielson, E.; Wall, C. G.;
Saderholm, M. J.; Erickson, B. W.; Meyer, T. J. Proc. Natl. Acad. Sci.
1996, 93, 8200-8204.
(49) Tierney, M. T.; Sykora, M.; Khan, S. I.; Grinstaff, M. W. J. Phys.
Chem. B. 2000, 104, 7574-7576.
(50) Hoffer, M.; Dushinsky, R.; Fox, J. J.; Yung, N. J. Am. Chem. Soc.
1959, 81, 4112.
(51) Bobek, M.; Kavai, I.; De Clercq, E. J. Med. Chem. 1987, 30, 1494-
1497.
(38) Khan, S. I.; Grinstaff, M. W. J. Am. Chem. Soc. 1999, 121, 4704-
4705.
(39) Khan, S. I.; Beilstein, A. E.; Tierney, M. T.; Sykora, M.; Grinstaff,
M. W. Inorg. Chem. 1999, 38, 5999-6002.
(40) Beilstein, A. E.; Grinstaff, M. W. Chem. Commun. 2000, 509-
510.
(41) Tierney, M. T.; Grinstaff, M. W. Org. Lett. 2000, 2, 3413-3416.
(42) Khan, S. I.; Beilstein, A. E.; Sykora, M.; Smith, G. D.; Hu, X.;
Grinstaff, M. W. Inorg. Chem. 1999, 38, 3922-3925.
(43) Tierney, M. T.; Grinstaff, M. W. J. Org. Chem. 2000, 65, 5355-
5359.
(44) Hu, X.; Smith, G. D.; Sykora, M.; Lee, S. J.; Grinstaff, M. W. Inorg.
Chem. 2000, 39, 2500-2504.
(45) Hu, X.; Tierney, M.; Grinstaff, M. W. Bioconjugate Chem. 2002,
13, 83-89.
(52) Wu, J. C.; Bazin, H.; Chattopadhyaya, J. Tetrahedron 1987, 43,
2355-2368.
(53) Ebdrup, S. J. Chem. Soc., Perkin Trans. 1 1998, 1147-1150.
4572
Org. Lett., Vol. 4, No. 26, 2002