Anal. Chem. 1999, 71, 4734-4739
Quantitation of Monosaccharide Isotopic
Enrichment in Physiologic Fluids by Electron
Ionization or Negative Chemical Ionization GC/MS
Using Di-O-isopropylidene Derivatives
David L. Hachey,* W. Reed Parsons, Siripoom McKay, and Morey W. Haymond
USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine,
Houston, Texas 77030
recently, investigators have focused their attention on quantifying
the enrichment of multiple isotopomers of glucose derived from
isotopic infusions of [2-13C]alanine, [2-13C]glycerol, and [U-13C]-
glucose to estimate the relative contribution of gluconeogenesis
to glucose production.3,6,12-18
The aldonitrile pentaacetate and other derivatives lack
ions in the electron ionization (EI) spectra possessing an
intact hexose structure and thus must be analyzed by
chemical ionization GC/ MS in order to study multiple
isotopomers. We report methods for quantitation of hex-
ose di-O-isopropylidene acetate (IP Ac) or pentafluoroben-
zoyl (P FBz) esters. These were prepared in a two-step
procedure using inexpensive reagents that do not ad-
versely impact the isotopomer structure of the sugar. The
acetate derivative possesses an abundant [M - CH3 ] ion
in the EI spectrum which is suitable for quantitative
analysis of isotopomers. The negative chemical ionization
(NCI) spectrum of the corresponding pentafluorobenzoyl
derivative has a dominant molecular anion. Moreover, the
P FBz derivative is about 1 0 0 -fold more sensitive than the
acetate, which offers some advantages for analysis of
minor hexoses found in plasma. Isotopic calibration
curves of [U-1 3 C]glucose are linear over the 0 .1 -6 0 %
tracer/ tracee range tested. The useful range for isotopic
tracer studies is 2 5 -2 5 0 0 pmol for EI analysis of the
acetate derivative and 0 .1 -5 5 pmol for NCI analysis of
P FBz derivative (sample amount injected). For most
studies where sample size is not limited, EI-GC/ MS
analysis of the IP Ac derivative is preferred. NCI-GC/ MS
analysis is reserved when sample size is limiting or when
studies involve hexoses other than glucose that are
normally present at low concentration.
Several techniques and derivatives have been described to
quantitate glucose isotopic enrichment. The more common
methods use the pentaacetate,6,19,20 aldonitrile pentaacetate,12,19,21-23
methyloxime pentatrimethylsilyl,1,12,24 bisbutylboronate acetate,12,25,26
and permethyl derivatives.12,27 Although each derivative has its
merits, those containing silicon or boron introduce significant
isotopic complexity in the mass spectrum, which limits their
usefulness for quantitation of isotopomers present at low enrich-
ment. The aldonitrile pentaacetate, simple hexose pentaacetates,
and permethylated hexoses generally lack ions in the electron
ionization (EI) spectrum possessing an intact hexose structure
and thus must be analyzed by chemical ionization (CI)-GC/ MS
in order to study the complete set of isotopomers.
The classic work by Biemann firmly established the utility of
MS for structural analysis of pentose and hexose acetates20 and
di-O-isopropylidene28 derivatives. Despite the fact that the O-
isopropylidene derivatives have been known for more than 60
(9) Searle, G. L. Clin. Endocrinol. Metab. 1 9 7 6 , 5, 783-804.
(10) Bier, D. M.; et al. Diabetes 1 9 7 7 , 26, 1016-23.
(11) Horber, F. F.; Marsh, H. M.; Haymond, M. W. Diabetes 1 9 9 1 , 40, 141-9.
(12) Beylot, M.; et al. Anal. Biochem. 1 9 9 3 , 212, 526-31.
(13) Yudkoff, M.; Nissim, I. Clin. Perinatol. 1 9 9 5 , 22, 97-109.
(14) Lee, W. N.; et al. Anal. Biochem. 1 9 9 5 , 226, 100-12.
(15) Robert, J. J.; et al. Diabetes 1 9 8 5 , 34, 67-73.
Analysis of the stable isotopic enrichment in plasma glucose
is one of the more enduring procedures in physiology and
metabolism. These measurements are used to determine rates of
hepatic glucose output in a variety of clinical conditions.1-11 More
(16) Fernandez, C. A.; et al. J. Mass Spectrom. 1 9 9 6 , 31, 255-62.
(17) Argoud, G. M.; Schade, D. S.; Eaton, R. P. Am. J. Physiol. 1 9 8 7 , 252, (5, Pt
1), E606-15.
(18) Martineau, A.; et al. Anal. Biochem. 1 9 8 5 , 151, 495-503.
(19) Guo, Z. K.; et al. Anal. Biochem. 1 9 9 2 , 204, 273-82.
(20) Biemann, K.; DeJongh, D. C.; Schnoes, H. K. J. Am. Chem. Soc. 1 9 6 3 , 85,
1763-70.
* Corresponding author: Department of Pharmacology 812 MRBI Vanderbilt
University Nashville, TN 37232-6400; (615)343-8382 (voice); (615)343-1268
(fax); david.l.hachey@vanderbilt.edu (e-mail).
(21) Szafranek, J.; Pfaffenberger, C. D.; Horning, E. C. Carbohydr. Res. 1 9 7 4 ,
38, 97-105.
(1) Laine, R. A.; Sweeley, C. C. Anal. Biochem. 1 9 7 1 , 43, 533-8.
(2) Bier, D. M. Baillieres Clin. Endocrinol. Metab. 1 9 8 7 , 1, 817-36.
(3) Bier, D. M.; et al. Diabetes 1 9 7 7 , 26, 1005-15.
(22) Pfaffenberger, C. D.; et al. Anal. Biochem. 1 9 7 5 , 63, 501-12.
(23) Previs, S. F.; et al. Anal. Biochem. 1 9 9 4 , 218, 192-6.
(24) Desage, M.; et al. Biomed. Environ. Mass Spectrom. 1 9 8 9 , 18, 1010-5.
(25) Wiecko, J.; Sherman, W. R. J. Am. Chem. Soc. 1 9 7 6 , 98, 7631-7.
(26) Lepetit, N.; Rocchiccioli, F. Rapid Commun. Mass Spectrom. 1 9 8 9 , 3, 153-
5.
(4) Delarue, J.; et al. Diabetologia 1 9 9 3 , 36, 338-45.
(5) Shaw, J. H.; Klein, S.; Wolfe, R. R. Surgery 1 9 8 5 , 97, 557-68.
(6) Tserng, K. Y.; Kalhan, S. C. Am. J. Physiol. 1 9 8 3 , 245 (t, Pt 1), E476-82.
(7) Royle, G. T.; Wolfe, R. R.; Burke, J. F. J. Surg. Res. 1 9 8 3 , 34, 187-93.
(8) Royle, G. T.; et al. Clin. Sci. 1 9 8 2 , 62, 553-6.
(27) Kochetkov, N. K.; Chizov, O. S. Tetrahedron 1 9 6 5 , 21, 2029-2047.
(28) DeJongh, D. C.; Biemann, K. J. Am. Chem. Soc. 1 9 6 4 , 86, 67-86.
4734 Analytical Chemistry, Vol. 71, No. 20, October 15, 1999
10.1021/ac990724x CCC: $18.00 © 1999 American Chemical Society
Published on Web 09/16/1999