Organic Letters
Letter
5
7, 5845. (c) Chen, D. Y.-K.; Pouwer, R. H.; Richard, J.-A. Recent
(11) (a) Jouffroy, M.; Primer, D. N.; Molander, G. A. Base-Free
Photoredox/Nickel Dual Catalytic Cross-Coupling of Ammonium
Alkylsilicates. J. Am. Chem. Soc. 2016, 138, 475−478. (b) Gutierrez-
Bonet, A.; Tellis, J. C.; Matsui, J. K.; Vara, B. A.; Molander, G. A. 1,4-
Dihydropyridines as Alkyl Radical Precursors: Introducing the
Aldehyde Feedstock to Nickel/Photoredox Dual Catalysis. ACS
Catal. 2016, 6, 8004−8008.
advances in the total synthesis of cyclopropane-containing natural
products. Chem. Soc. Rev. 2012, 41, 4631. (d) Hansen, T. V.;
Stenstrøm, Y. Naturally Occurring Cyclobutanes. In Organic Synthesis:
Theory and Applications; Hudlicky, T., Ed.; Elsevier: Oxford, U.K.,
2
(
001; Vol. 5, pp 1−38.
3) (a) Funel, J. A.; Abele, S. Industrial Applications of the Diels−
(12) (a) Phelan, J. P.; Lang, S. B.; Compton, J. S.; Kelly, C. B.;
Alder Reaction. Angew. Chem., Int. Ed. 2013, 52, 3822. (b) Nicolaou,
K. C.; Snyder, S. A.; Montagnon, T.; Vassilikogiannakis, G. The
Diels−Alder Reaction in Total Synthesis. Angew. Chem., Int. Ed. 2002,
Dykstra, R.; Gutierrez, O.; Molander, G. A. Redox-Neutral Photo-
catalytic Cyclopropanation via Radical/Polar Crossover. J. Am. Chem.
Soc. 2018, 140, 8037. (b) Guo, T.; Zhang, L.; Liu, X.; Fang, Y.; Jin, X.;
4
1, 1668. (c) Remy, R.; Bochet, C. G. Arene−Alkene Cycloaddition.
Chem. Rev. 2016, 116, 9816. (d) Jones, A. C.; May, J. A.; Sarpong, R.;
Stoltz, B. M. Toward a Symphony of Reactivity: Cascades Involving
Catalysis and Sigmatropic Rearrangements. Angew. Chem., Int. Ed.
(13) For examples of this type of ring closure in cyclopropane
synthesis, see: (a) Lachia, M.; Iriart, S.; Baalouch, M.; De Mesmaeker,
A.; Beaudegnies, R. Ethyl-2-(2-chloroethyl)acrylate: a new very
versatile a-cyclopropylester cation synthon. Tetrahedron Lett. 2011,
2
(
014, 53, 2556.
4) Mal, D. Anionic Annulations in Organic Synthesis: A Versatile and
Prolific Class of Ring-Forming Reactions, 1st ed.; Elsevier Science: USA,
018.
5) (a) Jasperse, C. P.; Curran, D. P.; Fevig, T. L. Radical reactions
in natural product synthesis. Chem. Rev. 1991, 91, 1237. (b) Giese, B.;
Kopping, B.; Gobel, T.; Dickhaut, J.; Thoma, G.; Kulicke, K. J.; Trach,
F. Radical Cyclization Reactions. Org. React. 1996, 48, 301.
c) Romero, K. J.; Galliher, M. S.; Pratt, D. A.; Stephenson, C. R.
5
2, 3219−3222. (b) Lebel, H.; Marcoux, J.-M.; Molinaro, C.;
2
(
Charette, A. B. Stereoselective Cyclopropanation Reactions. Chem.
Rev. 2003, 103, 977. (c) Little, R. D.; Dawson, J. R. MIRC (Michael
Initiated Ring Closure) Reactions Formation of Three, Five, Six and
Seven Membered Rings. Tetrahedron Lett. 1980, 21, 2609.
̈
(
14) Charette, A. B.; Beauchemin, A. Simmons-Smith Cyclo-
propanation Reaction. Org. React. 2001, 58, 1−395.
15) During the preparation of this manuscript, a report was
(
(
Rankic, D. A.; MacMillan, D. W. C. Visible Light Photoredox
Catalysis with Transition Metal Complexes: Applications in Organic
Synthesis. Chem. Rev. 2013, 113, 5322. (b) Romero, N. A.; Nicewicz,
D. A. Organic Photoredox Catalysis. Chem. Rev. 2016, 116, 10075.
(
disclosed verifying the feasibility of this approach with carboxylic acid
radical precursors. See: Shu, C.; Mega, R. S.; Andreassen, B. J.; Noble,
A.; Aggarwal, V. K. Synthesis of Functionalized Cyclopropanes from
6) For reviews on photoredox catalysis, see: (a) Prier, C. K.;
(16) Lepore, S. D.; Mondal, D. Recent advances in heterolytic
(c) Matsui, J. K.; Lang, S. B.; Heitz, D. R.; Molander, G. A.
nucleofugal leaving groups. Tetrahedron 2007, 63, 5103.
Photoredox-Mediated Routes to Radicals: The Value of Catalytic
Radical Generation in Synthetic Methods Development. ACS Catal.
(
17) C−O bonds generally are ∼85 kcal/mol whereas the C−I
3
bonds are typically only ∼57 kcal/mol for Csp centers, making them
homolytically much weaker. See: Blanksby, S. J.; Ellison, G. B. Bond
Dissociation Energies of Organic Molecules. Acc. Chem. Res. 2003, 36,
2
017, 7, 2563. (d) Shaw, M. H.; Twilton, J.; MacMillan, D. W. C.
Photoredox Catalysis in Organic Chemistry. J. Org. Chem. 2016, 81,
898.
7) For seminal reports, see: (a) Tellis, J. C.; Primer, D. N.;
6
(
2
(
55.
18) Collins, K. D.; Glorius, F. A robustness screen for the rapid
Molander, G. A. Single-electron transmetalation in organoboron
cross-coupling by photoredox/nickel dual catalysis. Science 2014, 345,
assessment of chemical reactions. Nat. Chem. 2013, 5, 597.
(19) Capaldo, L.; Ravelli, D. Hydrogen Atom Transfer (HAT): A
Versatile Strategy for Substrate Activation in Photocatalyzed Organic
Synthesis. Eur. J. Org. Chem. 2017, 2017, 2056.
433. (b) Zuo, Z.; Ahneman, D. T.; Chu, L.; Terrett, J. A.; Doyle, A.
G.; MacMillan, D. W. C. Merging photoredox with nickel catalysis:
Coupling of α-carboxyl sp3-carbons with aryl halides. Science 2014,
(20) Luo, J.; Zhang, J. Donor-Acceptor Fluorophores for Visible-
3
45, 437. For reviews, see: (c) Tellis, J. C.; Kelly, C. B.; Primer, D.
Light-Promoted Organic Synthesis: Photoredox/Ni Dual Catalytic
C(sp )-C(sp ) Cross-Coupling. ACS Catal. 2016, 6, 873−877.
3
2
N.; Jouffroy, M.; Patel, N. R.; Molander, G. A. Single-Electron
Transmetalation via Photoredox/Nickel Dual Catalysis: Unlocking a
3
2
New Paradigm for sp −sp Cross-Coupling. Acc. Chem. Res. 2016, 49,
429. (d) Skubi, K. L.; Blum, T. R.; Yoon, T. P. Dual Catalysis
Strategies in Photochemical Synthesis. Chem. Rev. 2016, 116, 10035.
e) Gui, Y.-Y.; Sun, L.; Lu, Z.-P.; Yu, D.-G. Photoredox sheds new
1
(
light on nickel catalysis: from carbon−carbon to carbon−heteroatom
bond formation. Org. Chem. Front. 2016, 3, 522.
(
8) Yoon, T. P. Visible Light Photocatalysis: The Development of
Photocatalytic Radical Ion Cycloadditions. ACS Catal. 2013, 3, 895.
9) For examples, see: (a) Lang, S. B.; Wiles, R. J.; Kelly, C. B.;
(
Molander, G. A. Photoredox Generation of Carbon-Centered Radicals
Enables the Construction of 1,1-Difluoroalkene Carbonyl Mimics.
Angew. Chem., Int. Ed. 2017, 56, 15073. (b) Kischkewitz, M.;
Okamoto, K.; Muck-Lichtenfeld, C.; Studer, A. Science 2017, 355,
9
36−938. (c) Koike, T.; Akita, M. Acc. Chem. Res. 2016, 49, 1937−
1945.
(
10) (a) Zhang, R.; Li, G.; Wismer, M.; Vachal, P.; Colletti, S. L.;
3
2
Shi, Z.-C. Profiling and Application of Photoredox C(sp )−C(sp )
Cross-Coupling in Medicinal Chemistry. ACS Med. Chem. Lett. 2018,
9, 773. (b) Douglas, J. J.; Sevrin, M. J.; Stephenson, C. R. J. Visible
Light Photocatalysis: Applications and New Disconnections in the
Synthesis of Pharmaceutical Agents. Org. Process Res. Dev. 2016, 20,
1
134. (c) Ko
̈
nig, B. Photocatalysis in Organic Synthesis − Past,
Present, and Future. Eur. J. Org. Chem. 2017, 2017, 1979.
E
Org. Lett. XXXX, XXX, XXX−XXX