Brief Article
Journal of Medicinal Chemistry, 2010, Vol. 53, No. 22 8201
mixture was heated at 50 ꢀC for 5 h. After the mixture was cooled,
precipitates formed, which were collected by filtration. The solids
were dissolved in diethyl ether (7-10 mL), and trifluoroacetic acid
(0.2 mL) was added to the solutions to obtain the corresponding
trifluoroacetate salts.
amyloids by 4,5-dianilinophthalimide and analogs. Proc. Natl.
Acad. Sci. U.S.A. 2008, 105, 7159–7164.
(16) Sellarajah, S.; Lekishvili, T.; Bowring, C.; Thompsett, A. R.;
Rudyk, H.; Birkett, C. R.; Brown, D. R.; Gilbert, I. H. Synthesis
of analogues of Congo red and evaluation of their anti-prion
activity. J. Med. Chem. 2004, 47, 5515–5534.
(17) Bolognesi, M. L.; Tran, H. N. A.; Staderini, M.; Monaco, A.;
Lopez-Cobenas, A.; Bongarzone, S.; Biarnes, X.; Lopez-Alvarado,
P.; Cabezas, N.; Caramelli, M.; Carloni, P.; Menendez, J. C.;
Legname, G. Discovery of a class of diketopiperazines as antiprion
compounds. ChemMedChem 2010, 5, 1324–1334.
(18) Corson, T. W.; Aberle, N.; Crews, C. M. Design and applications
of bifunctional small molecules: why two heads are better than one.
ACS Chem. Biol. 2008, 3, 677–692.
(19) Kim, Y. S.; Lee, J. H.; Ryu, J.; Kim, D. J. Multivalent and multifunc-
tional ligands to beta-amyloid. Curr. Pharm. Des. 2009, 15, 637–658.
(20) Dollinger, S.; Lober, S.; Klingenstein, R.; Korth, C.; Gmeiner, P.
A chimeric ligand approach leading to potent antiprion active
acridine derivatives: design, synthesis, and biological investiga-
tions. J. Med. Chem. 2006, 49, 6591–6595.
(21) Dolphin, G. T.; Chierici, S.; Ouberai, M.; Dumy, P.; Garcia, J.
A multimeric quinacrine conjugate as a potential inhibitor of
Alzheimer’s beta-amyloid fibril formation. ChemBioChem 2008,
9, 952–963.
Acknowledgment. This work was supported by grants
from the Fondazione Compagnia di San Paolo and by
Friuli-Venezia-Giulia Region through the Project “Search
for New Drugs” (SeND) (to G.L.), by University of Bologna
and MUR (to M.L.B.). The authors thank Gabriella Furlan
for editing and proofreading the manuscript. S.B. thanks
Professor C. Melchiorre for fruitful discussions.
Supporting Information Available: Chemical characterization
of 1-23 biological methods, and docking results. This material
References
(1) Caughey, B.; Baron, G. S. Prions and their partners in crime.
Nature 2006, 443, 803–810.
(2) Prusiner, S. B. Prions. Proc. Nat. Acad. Sci. U. S. A. 1998, 95,
13363–13383.
(3) Mallucci, G.; Collinge, J. Rational targeting for prion therapeutics.
(22) Ouberai, M.; Dumy, P.; Chierici, S.; Garcia, J. Synthesis and
biological evaluation of clicked curcumin and clicked KLVFFA
conjugates as inhibitors beta-amyloid fibril formation. Bioconjugate
Chem. 2009, 20, 2123–2132.
(23) Tran, H. N. A.; Bongarzone, S.; Carloni, P.; Legname, G.;
Bolognesi, M. L. Synthesis and evaluation of a library of 2,5-
bisdiamino-benzoquinone derivatives as probes to modulate
protein-protein interactions in prions. Bioorg. Med. Chem. Lett.
2010, 20, 1866–1868.
(24) Cope, H.; Mutter, R.; Heal, W.; Pascoe, C.; Brown, P.; Pratt, S.;
Chen, B. Synthesis and SAR study of acridine, 2-methylquinoline
and 2-phenylquinazoline analogues as anti-prion agents. Eur. J.
Med. Chem. 2006, 41, 1124–1143.
(25) Klingenstein, R.; Melnyk, P.; Leliveld, S. R.; Ryckebusch, A.;
Korth, C. Similar structure-activity relationships of quinoline
derivatives for antiprion and antimalarial effects. J. Med. Chem.
2006, 49, 5300–5308.
(26) Tribouillard-Tanvier, D.; Beringue, V.; Desban, N.; Gug, F.; Bach,
S.; Voisset, C.; Galons, H.; Laude, H.; Vilette, D.; Blondel, M.
Antihypertensive drug guanabenz is active in vivo against both
yeast and mammalian prions. PloS One 2008, 3, No. e1981.
(27) Bolognesi, M. L.; Banzi, R.; Bartolini, M.; Cavalli, A.; Tarozzi, A.;
Andrisano, V.; Minarini, A.; Rosini, M.; Tumiatti, V.; Bergamini,
C.; Fato, R.; Lenaz, G.; Hrelia, P.; Cattaneo, A.; Recanatini, M.;
Melchiorre, C. Novel class of quinone-bearing polyamines as
multi-target-directed ligands to combat Alzheimer’s disease.
J. Med. Chem. 2007, 50, 4882–4897.
(28) Bolognesi, M. L.; Cavalli, A.; Bergarmini, C.; Fato, R.; Lenaz, G.;
Rosini, M.; Bartolini, M.; Andrisano, V.; Melchiorre, C. Toward a
rational design of multitarget-directed antioxidants: merging memo-
quin and lipoic acid molecular frameworks. J. Med. Chem. 2009, 52,
7883–7886.
(29) Milhavet, O.; Mcmahon, H. E. M.; Rachidi, W.; Nishida, N.;
Katamine, S.; Mange, A.; Arlotto, M.; Casanova, D.; Riondel, J.;
Favier, A.; Lehmann, S. Prion infection impairs the cellular
response to oxidative stress. Proc. Nat. Acad. Sci. U.S.A. 2000,
97, 13937–13942.
(30) Singh, N.; Singh, A.; Das, D.; Mohan, M. L. Redox control of
prion and disease pathogenesis. Antioxid. Redox Signaling 2010,
12, 1271–1294.
Nat. Rev. Neurosci. 2005, 6, 23–34.
(4) Pamplona, R.; Naudi, A.; Gavin, R.; Pastrana, M. A.; Sajnani, G.;
Ilieva, E. V.; del Rio, J. A.; Portero-Otin, M.; Ferrer, I.; Requena,
J. R. Increased oxidation, glycoxidation, and lipoxidation of brain
proteins in prion disease. Free Radical Biol. Med. 2008, 45, 1159–
1166.
(5) Klamt, F.; Dal-Pizzol, F.; da Frota, M. L. C.; Walz, R.; Andrades,
M. E.; da Silva, E. G.; Brentani, R. R.; Izquierdo, I.; Moreira,
J. C. F. Imbalance of antioxidant defense in mice lacking
cellular prion protein. Free Radical Biol. Med. 2001, 30, 1137–
1144.
(6) Carrell, R. W.; Lomas, D. A. Conformational disease. Lancet 1997,
350, 134–138.
(7) Cashman, N. R.; Caughey, B. Prion diseases;close to effective
therapy? Nat. Rev. Drug Discovery 2004, 3, 874–884.
(8) Trevitt, C. R.; Collinge, J. A systematic review of prion therapeutics in
experimental models. Brain 2006, 129, 2241–2265.
(9) Caughey, B.; Raymond, L. D.; Raymond, G. J.; Maxson, L.;
Silveira, J.; Baron, G. S. Inhibition of protease-resistant prion
protein accumulation in vitro by curcumin. J. Virol. 2003, 77, 5499–
5502.
(10) May, B. C. H.; Fafarman, A. T.; Hong, S. B.; Rogers, M.; Deady,
L. W.; Prusiner, S. B.; Cohen, F. E. Potent inhibition of scrapie
prion replication in cultured cells by bis-acridines. Proc. Natl.
Acad. Sci. U.S.A. 2003, 100, 3416–3421.
(11) Csuk, R.;Barthel, A.;Raschke, C.;Kluge, R.;Strohl, D.;Trieschmann,
L.; Bohm, G. Synthesis of monomeric and dimeric acridine com-
pounds as potential therapeutics in alzheimer and prion diseases.
Arch. Pharm. 2009, 342, 699–709.
(12) Kuwata, K.; Nishida, N.; Matsumoto, T.; Kamatari, Y. O.;
Hosokawa-Muto, J.; Kodama, K.; Nakamura, H. K.; Kimura,
K.; Kawasaki, M.; Takakura, Y.; Shirabe, S.; Takata, J.; Kataoka,
Y.; Katamine, S. Hot spots in prion protein for pathogenic con-
version. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 11921–11926.
(13) Kocisko, D. A.; Baron, G. S.; Rubenstein, R.; Chen, J.; Kuizon, S.;
Caughey, B. New inhibitors of scrapie-associated prion protein
formation in a library of 2000 drugs and natural products. J. Virol.
2003, 77, 10288–10294.
(31) Martin, S. F.; Buron, I.; Espinosa, J. C.; Castilla, J.; Villalba, J. M.;
Torres, J. M. Coenzyme Q and protein/lipid oxidation in a BSE-
infected transgenic mouse model. Free Radical Biol. Med. 2007, 42,
1723–1729.
(32) Bolognesi, M. L.; Cavalli, A.; Melchiorre, C. Memoquin: a multi-
target-directed ligand as an innovative therapeutic opportunity for
Alzheimer’s disease. Neurotherapeutics 2009, 6, 152–162.
(33) Kimata, A.; Nakagawa, H.; Ohyama, R.; Fukuuchi, T.; Ohta, S.;
Suzuki, T.; Miyata, N. New series of antiprion compounds:
pyrazolone derivatives have the potent activity of inhibiting pro-
tease-resistant prion protein accumulation. J. Med. Chem. 2007, 50,
5053–5056.
(14) Murakami-Kubo, I.; Doh-ura, K.; Ishikawa, K.; Kawatake, S.;
Sasaki, K.; Kira, J. I.; Ohta, S.; Iwaki, T. Quinoline derivatives are
therapeutic candidates for transmissible spongiform encephalop-
athies. J. Virol. 2004, 78, 1281–1288.
(15) Wang, H.; Duennwald, M. L.; Roberts, B. E.; Rozeboom, L. M.;
Zhang, Y. X. L.; Steele, A. D.; Krishnan, R.; Su, L. J.; Griffin, D.;
Mukhopadhyay, S.; Hennessy, E. J.; Weigele, P.; Blanchard, B. J.;
King, J.; Deniz, A. A.; Buchwald, S. L.; Ingram, V. M.; Lindquist,
S.; Shorter, J. Direct and selective elimination of specific prions and