[9] Neuzillet C., Gramont A. d., Raballand A. T., Mestier L. d., Cros J., Faivre S. and Raymond E. “Perspectives of TGF-β inhibition in pancreatic and hepatocellular
carcinomas”, Oncotarget, 5(1), 78-94, 2013.
[10] Yingling J. M., McMillen W. T., Yan L., Huang H., Sawyer J. S., Graff J., Clawson D. K., Britt K. S., Anderson B. D., Beight D. W., Desaiah D., Lahn M.l
M., Benhadji K. A., Lallena M. J., Holmgaard R. B., Xu X., Zhang F., Manro J. R., Iversen P. W., Iyer C. V., Brekken R. A., Kalos M. D. and Driscoll K. E.,
“Preclinical assessment of galunisertib (LY2157299 monohydrate), a first-in-class transforming growth factor-β receptor type I inhibitor . ” oncotarget , 9(6),
6659-6677, 2018.
[11] Byfield S. D., Major C., Laping N. J., and Roberts A. B. “SB-505124 Is a Selective Inhibitor of Transforming Growth Factor- Type I Receptors ALK4, ALK5,
and ALK7”, Mol Pharmacol, 65, 774-752, 2004.
[12] Capper E. A., Roshak A. K., Bolognese B. J., Podolin P. L., Smith T., Dewitt D. L., Anderson K. M., and Marshall L. A. "Modulation of human monocyte
activities by tranilast, SB 252218, a compound demonstrating efficacy in restenosis", J. Pharmacol. Exp. Ther., 295, 1061-1069, 2000.
[13] Gellibert F., Woolven J., Fouchet M. H., Mathews N., Goodland H., Lovegrove V., Laroze A., Nguyen V., Sautet S., Wang R., Janson C., Smith W., Krysa
G., Boullay X V., Gouville A. C., Huet S. and Hartley D., “Identification of 1, 5-Naphthyridine Derivatives as a Novel Series of Potent and Selective TGF-â Type
I Receptor Inhibitors”, J. Med. Chem, 47, 4494-4506, 2004.
[14] Herbertz S., Sawyer J. S., Stauber A. J., Gueorguieva I., Driscoll K. E., Estrem S. T., Cleverly A. L., Desaiah D., Guba S. C., Benhadji K. A., Slapak C. A.and
Lahn M. M., “Clinical development of galunisertib (LY2157299 monohydrate), a small molecule inhibitor of transforming growth factor-beta signaling pathway”,
Drug Design, Development and Therapy, 9, 4479–4499, 2015.
[15] Raffa D., Maggio B., Plescia F., Cascioferro S., Plescia S., Raimondi M. V., Daidone G., Tolomeo M., Grimaud S., Cristina A. D., Pipitone R. M., Bai R.and
Hamel E., “Synthesis, antiproliferative activity, and mechanism of action of a series of 2-{[(2E)-3-phenylprop-2-enoyl]amino}benzamides ” European Journal of
Medicinal Chemistry, 46, 2786-2796, 2011.
[16] Rogosnitzky M., Danks R. And Kardash E., “Therapeutic Potential of Tranilast, an Anti-allergy Drug, in Proliferative Disorders”, Anticancer Research, 32,
2471-2478, 2012.
[17] Isaji M., Miyata H., Ajisawa Y., Takehana Y. and Yoshimura N., “Tranilast inhibits the proliferation, chemotaxis and tube formation of human microvascular
endothelial cells in vitro and angiogenesis in vivo”, British Journal of Pharmacology, 1061 - 1066., 122, 1061-1066, 1997.
[18] Yashiro M., Murahashi K., Matsuoka T., Nakazawa K., Tanaka H., Osaka H., Koyama T., Ohira M., Chung K. H.," Tranilast (N-3,4-dimethoxycinamoyl
anthranilic acid): A novel inhibitor of invasion-stimulating interaction between gastric cancer cells and orthotopic fibroblasts". Anticancer Res., 23, 3899 - 3904,
2003.
[19] SubramaniamV., Chakrabarti R., Prud’homme G. J. and Jothy S., "Tranilast inhibits cell proliferation and migration and promotes apoptosis in murine breast
cancer ". Anti-Cancer Drugs, 21 (4), 351-361, 2010.
[20] Pistritto G., Trisciuoglio D., Ceci C., Garufi A., and Orazi G. D., "Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted
therapeutic strategies", AGING, 8 (4), 603-619, 2016.
[21] Brahmachari G., Laskar S. and Sarkar S., “A green approach to chemoselective N-acetylation of amines using catalytic amount of zinc acetate in acetic acid
under microwave irradiation”, Indi. J. of Chemistry, 49B, 1274-1281, 2010.
[22] Erikson J., “N-acetylanthranilic acid: a highly triboluminercent material”, J. Chem. Educ., 49 (10), 688, 1972.
[23] Kiruthiga B., Ilango K., Valentina P., Umarani N. and Patel R., “synthesis of some new 2-substituted quinazolin-4-one derivatives and their biological
activties”, Int. J. Pharm. Tech. Res., 1(4), 1503-1506, 2009.
[24] Ismail M. M. F., Amin K. M., Noaman E., Soliman D. H., Ammar Y. A., “New quinoxaline 1, 4-di-N-oxides: Anticancer and hypoxia-selective therapeutic
agents”, European Journal of Medicinal Chemistry, 45, 2733-2738, 2010.
[25] Pasha M. A., Khan R. R. and Shrivatsa N., “N-Sulfonylation of amines, imides, amides and anilides using p-TsCl in presence of atomized sodium in EtOH-
[26] AL-Zubiady S. and Ibrahim W. A.., “Synthesis and characterization of new quinazoline–4(3H)-one Schiff bases”, J. Chem. Pharm. Res., 5 (7), 42-45, 2013.
[27] Thirugnanasambanthan A. and Sankarnarayanan S., “Synthesis of 2, 3-disubstituted quinazolone derivatives for analgesic and antimicrobial activities”, J.
Chem. Pharm. Res., 4 (2), 1147-1150, 2012.
[28] Ismail M. M. F., Ammar Y. A., El-Zahaby H. S. A., Eisa S. I., and Barakat S. E., “Synthesis of Novel 1-Pyrazolylpyridin-2-ones as Potential Anti-Inflammatory
and Analgesic Agents”, Arch. Pharm. Chem. Life Sci., 340, 476 – 482, 2007.
[29] Muralidhar L., Girija C.R., “Simple and practical procedure for Knoevenagel condensation under solvent-free conditions”, Journal of Saudi Chemical Society,
18, 541-544, 2014.
[30] Connolly D. J., Declan C., Timothy P. O. and Patrick J. G. ''Synthesis of quinazolinones and quinazolines''.Tetrahedron, 61, 10153 –10202, 2005.
[31] Desai A. R., Roy R. U. and Desa K.R. ''synthesis and antimicrobial screening of quinazolone containing novel heterocyclic schiff base and azetidinone by
niementowski reaction''. E- J. Chem., 2(2), 101 -108, 2005.
[32] Ren Y. M. and Cai C.," knoevenagel condensation of aromatic aldehydes with active methylene compounds using a catalytic amount of iodine and k2CO3 at
room temperature", Synthetic Communications, 37, 2209-2213, 2007.
[33] Zabicky J. ''the kinetics and mechanism of carbonyl-methylene condensation reactions. ''. J. Chem.Soc., 0, 683-687, 1961.
[34] Ismail M. M. F., Farrag A. M., Harras M. F., Ibrahim M. H., Mehany A. B. M. '' Apoptosis: A target for anticancer therapy with novel cyanopyridines. ''.
Bioorg. Chem., 94, 103481, 2020.
[35] Kanhed A. A., Mehere A. P., Pandey K. R. and Mahapatra D. K., " 4-(2-chloroacetamido) Benzoic Acid Derivatives as Local Anesthetic Agents: Design,
Synthesis, and Characterization", Journal of Pharmaceutical and Biosciences, 4(6), 35-44, 2016.
[36] Acharyulu P.V., Dubey P. K., Reddy P.V. and Surech Th. ''Synthesis of 2-(4-substitutedsulfonyl piperazin-1-yl-methyl)-3-aryl-quinazolin-4(3H)-one''. Ind.,
J., Chem., 49(7), 923-928, 2010.
[37] Al-Zaydia K. M., Al-Shamarya A. and Elnagdi M. H., “Studies with heteroaromatic amines. A new route to 2-azolylamino- 2-thiazolin-4-ones”, Journal of
Chemical Research , 408-411, 2006.
[38] Puterová Z., Krutošíková A. and Végh D., "Gewald reaction: synthesis, properties and applications of substituted 2-aminothiophenes", ARKIVOC, I, 209-246,
2010.
[39] Gouda M. A., "LiOH. H2O as a catalyst for Knoevenagel and Gewald reactions", J.Chem. Tech., 12, 4, 31-35, 2010.
[40] Abu-Hashem A. A., EL-Shehry M. F. and Badria F. A., "Design and synthesis of novel thiophene carbohydrazide, thienopyrazole and thienopyrimidine
derivatives as antioxidant and antitumor agents" , Acta Pharm , 60, 311-323, 2010.
[41] Kathiravan M. K., Shishoo C. J., Chitre T. S., Mahadik K. R. and Jain K. S., "Efficient Synthesis of Substituted 2‐Amino‐3‐ carbethoxythiophenes" , Int. J.
Rapid Communication of Syn. Org. Chem., 37, 4273–4279, 2007.
[42] Forero J. S. B., Carvalho E. M. d., Juniora J. J. and Flavia M. da. S., "A New Protocol For The Synthesis Of 2-AminoThiophens Through The Gewald
Reaction In Solvent-Free Conditions ", Heterocyclic Letts., 1, 61-67, 2011.
26