Organic Letters
Letter
Fortunately, Swern oxidation provided the enone 16 as an
inconsequential 1:1 mixture of diastereoisomers.
The final steps toward trachyspic acid 19-n-butyl ester (1)
are shown in Scheme 5 and mirror those utilized in the total
■
Corresponding Author
Mark A. Rizzacasa − School of Chemistry and Bio21 Molecular
Scheme 5. Completion of the Synthesis of 1
Author
Alex A. Rafaniello − School of Chemistry and Bio21 Molecular
Science and Biotechnology Institute, The University of
Melbourne, Melbourne, Victoria 3010, Australia
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank the Australian Research Council Discovery Program
and the University of Melbourne Faculty of Science Research
Grant Support Scheme for funding. We also thank Dr.
Christian Gunawan and Tony Duncan (Circa Pty Ltd) for
the generous gift of (S)-(+)-γ-hydroxymethyl-γ-butyrolactone.
6
synthesis of trachyspic acid (2). Exposure of enone 16 to
aqueous perchloric acid induced spiroacetal formation, and
acetylation followed by ozonolysis with concomitant elimi-
nation afforded the desired di-t-butyl ester 17 as the major C6
spiroisomer after purification by high-performance liquid
6b,c
REFERENCES
■
chromatography (HPLC). A plausible explanation
for this
(
1) Nogawa, T.; Ogita, N.; Futamura, Y.; Negishi, S.; Watanabe, N.;
Osada, H. J. Antibiot. 2017, 70, 705−707.
2) (a) Strebhardt, K.; Ullrich, A. Nat. Rev. Cancer 2006, 6, 321−
30. (b) Gutteridge, R. E. A.; Ndiaye, M. A.; Liu, X.; Ahmad, N. Mol.
Cancer Ther. 2016, 15, 1427−1435.
3) Shiozawa, H.; Takahashi, M.; Takatsu, T.; Kinoshita, T.;
stereochemical outcome involves attack of the aldehyde,
initially formed by acid-mediated acetal removal, on the
oxonium ion from the least hindered re face to form the
desired C6 spiroisomer. However, it should be noted that the
stereochemical outcome of this spirocyclization could be under
thermodynamic control. The resultant hemiacetal is then
converted into the acetate, and subsequent oxidative alkene
cleavage and base-induced elimination installs the enone.
Correlations observed in the HMBC spectrum of 17 served to
(
3
(
Tanzawa, K.; Hosoya, T.; Furuya, K.; Takahashi, S.; Furihata, K.;
Seto, H. J. Antibiot. 1995, 48, 357−362.
(4) (a) Jones, D. T.; Woods, D. R. Microbiol. Rev. 1986, 50, 484−
524. (b) Tian, C.; Ni, J.; Chang, F.; Liu, S.; Xu, N.; Sun, W.; Xie, Y.;
Guo, Y.; Ma, Y.; Yang, Z.; Dang, C.; Huang, Y.; Tian, Z.; Wang, Y. Sci.
Rep. 2016, 6, 1−8.
19
confirm the location of the butyl ester on the C19 carboxyl.
Attempts at removal of the t-buyl esters in 17 with formic acid
resulted in incomplete deprotection. Clean t-butyl ester
removal was eventually achieved by treatment of 17 with
trifluoroacetic acid (TFA), which afforded trachyspic acid 19-
n-butyl ester (1) in excellent yield. The data for synthetic 1
matched that reported, including the sign and value of the
(
5) (a) Huang, H.; Chao, Q. R.; Tan, R. X.; Sun, H. D.; Wang, D.
C.; Ma, J.; Zhao, S. X. Planta Med. 1999, 65, 92−93. (b) Gentry, E. J.;
Jampani, H. B.; Keshavarz-Shokri, A.; Morton, M. D.; Vander Velde,
D.; Telikepalli, H.; Mitscher, L. A.; Shawar, R.; Humble, D.; Baker, W.
J. Nat. Prod. 1998, 61, 1187−1193.
(
6) (a) Morokuma, K.; Taira, Y.; Uehara, Y.; Shibahara, S.;
2
1
1
21
D
specific rotation {[α] = +9.5 (c 0.1, CHCl ); lit. [α] = +6.0
Takahashi, K.; Ishihara, J.; Hatakeyama, S. Tetrahedron Lett. 2008, 49,
6043−6045. (b) Hirai, K.; Ooi, H.; Esumi, T.; Iwabuchi, Y.;
Hatakeyama, S. Org. Lett. 2003, 5, 857−859. (c) Zammit, S.; Ferro,
V.; Hammond, E.; Rizzacasa, M. Org. Biomol. Chem. 2007, 5, 2826−
834. (d) Zammit, S.; White, J. M.; Rizzacasa, M. A. Org. Biomol.
Chem. 2005, 3, 2073−2074.
7) Calo, F.; Richardson, J.; White, A.; Barrett, A. Tetrahedron Lett.
009, 50, 1566−1567.
8) (a) Atkin, L.; Chen, Z.; Robertson, A.; Sturgess, D.; White, J. M.;
D
3
(
c 0.1, CHCl )}.
In conclusion, we have completed the first highly stereo-
3
selective synthesis of trachyspic acid 19-n-butyl ester that did
not require any oxidative manipulations to secure the citrate
oxidation level. This route showcases a two-step formal [2 +
2
(
2
(
2
]-cycloaddition and acid-mediated cascade sequence for the
introduction of the alkyl citrate C3 and C4 stereocenters with
essentially complete stereocontrol. In addition, this route
provides a simple approach to the selective esterification of all
three carboxylic acids.
Rizzacasa, M. A. Org. Lett. 2018, 20, 4255−4258. (b) Chen, Z.;
Robertson, A.; White, J. M.; Rizzacasa, M. A. Org. Lett. 2019, 21,
9663−9666.
́
9) (a) Gil, A.; Albericio, F.; Alvarez, M. Chem. Rev. 2017, 117,
(
ASSOCIATED CONTENT
sı Supporting Information
8420−8446. (b) Tian, Q.; Zhang, G. Synthesis 2016, 48, 4038−4049.
■
(
10) Miesch, M.; Wendling, F. Eur. J. Org. Chem. 2000, 3381−3392.
11) Miesch, M.; Wendling, F.; Franck-Neumann, M. Tetrahedron
*
(
Lett. 1999, 40, 839−842.
(12) Hazarika, H.; Neog, K.; Sharma, A.; Das, B.; Gogoi, P. J. Org.
Chem. 2019, 84, 5846−5854.
(13) Huet, F.; Lechevallier, A.; Conia, J. M. Chem. Lett. 1981, 10,
1515−1518.
C
Org. Lett. XXXX, XXX, XXX−XXX