Full Paper
[33]
N. D. Vu, B. Guicheret, N. Duguet, E. Métay, M. Lemaire, Green Chem.
2017, 19, 3390–3399.
Y. Tsuchiya, Y. Hamashima, M. Sodeoka, Org. Lett. 2006, 8, 4851–4854.
T. Hara, J. Sawada, Y. Nakamura, N. Ichikuni, S. Shimazu, Catal. Sci. Tech-
nol. 2011, 1, 1376–1382.
P. M. Castro, H. Gulyás, J. Benet-Buchholz, C. Bo, Z. Freixa, P. W. N. M.
van Leeuwen, Catal. Sci. Technol. 2011, 1, 401–407.
In order to check that there is no de-coordination of the PA ligands we
performed control experiments (see SI for details). Firstly, we run a reac-
tion between the free OPS and the MVK in our conditions and found no
product (the SPO remains intact). Secondly, complex 1c was stirred with
MVK in the same conditions and 1c was recovered at the end of the
process. Finally, very thorough analysis of the final crude mixture did
not reveal any de-coordination of the ligands during the oxidation reac-
tion of the model substrate 2a.
G. W. Bushnell, K. R. Dixon, R. G. Hunter, J. J. McFarland, Can. J. Chem.
1972, 50, 3694–3699.
G. W. Bushnell, Can. J. Chem. 1978, 56, 1773–1778.
G. Trovo, G. Bandoli, U. Casellato, B. Corain, M. Nicolini, B. Longato, Inorg.
Chem. 1990, 29, 4616–4621.
T. K. Miyamoto, Y. Suzuki, H. Ichida, Chem. Lett. 1992, 21, 839–842.
T. K. Miyamoto, Y. Suzuki, H. Ichida, Bull. Chem. Soc. Jpn. 1992, 65, 3386–
3397.
E. Costa, M. Murray, P. G. Pringle, M. B. Smith, Inorg. Chim. Acta 1993,
213, 25–28.
Monnier for mass spectrometry analyses and Dr. Michel Giorgi
for X-ray diffraction analysis and structure determination (Spec-
tropole, Fédération des Sciences Chimiques de Marseille). Umi-
core AG & Co. KG is acknowledged for the generous gift of
platinum complexes.
[34]
[35]
[36]
[37]
Keywords: P ligands · Hydrides · Palladium · Platinum ·
Oxidation · Hydrogen transfer
[1] J.-E. Bäckvall (Ed.), Modern Oxidation Methods, Wiley-VCH, Weinheim,
2009.
[2] C. Parmeggiani, F. Cardona, Transition Metal Catalysis in Aerobic Alcohol
Oxidation, n.d.
[3] M. S. Sigman, M. J. Schultz, Org. Biomol. Chem. 2004, 2, 2551–
2554.
[4] K. M. Gligorich, M. S. Sigman, Chem. Commun. 2009, 3854.
[5] S. S. Stahl, Angew. Chem. Int. Ed. 2004, 43, 3400–3420; Angew. Chem.
2004, 116, 3480–3501.
[38]
[39]
[40]
[41]
[42]
[6] J. Muzart, Tetrahedron 2003, 59, 5789–5816.
[43]
[44]
[7] D. C. Ebner, R. M. Trend, C. Genet, M. J. McGrath, P. O'Brien, B. M. Stoltz,
Angew. Chem. Int. Ed. 2008, 47, 6367–6370; Angew. Chem. 2008, 120,
6467–6470.
[8] M. S. Sigman, D. R. Jensen, Acc. Chem. Res. 2006, 39, 221–229.
[9] D. R. Jensen, M. J. Schultz, J. A. Mueller, M. S. Sigman, Angew. Chem. Int.
Ed. 2003, 42, 3810–3813; Angew. Chem. 2003, 115, 3940–3943.
[10] A. Vasseur, R. Membrat, D. Gatineau, A. Tenaglia, D. Nuel, L. Giordano,
ChemCatChem 2017, 9, 728–732.
J. J. Li, W. Li, A. J. James, T. Holbert, T. P. Sharp, P. R. Sharp, Inorg. Chem.
1999, 38, 1563–1572.
B. Longato, G. Bandoli, A. Dolmella, Eur. J. Inorg. Chem. 2004, 1092–1099.
C. Pisano, G. Consiglio, A. Sironi, M. Moret, J. Chem. Soc., Chem. Commun.
1991, 421–421.
J. J. Li, W. Li, P. R. Sharp, Inorg. Chem. 1996, 35, 604–613.
U. Anandhi, T. Holbert, D. Lueng, P. R. Sharp, Inorg. Chem. 2003, 42, 1282–
1295.
[45]
[46]
[47]
[48]
[11] G. J. Ten Brink, I. W. C. E. Arends, R. A. Sheldon, Adv. Synth. Catal. 2002,
344, 355–369.
[12] W. C. Ho, K. Chung, A. J. Ingram, R. M. Waymouth, J. Am. Chem. Soc.
2018, 140, 748–757.
[13] P. Sgarbossa, A. Scarso, G. Strukul, R. A. Michelin, Organometallics 2012,
31, 1257–1270.
[14] R. A. Michelin, R. Ros, J. Chem. Soc., Dalton Trans. 1989, 1149–1159.
[15] M. Dagonneau, V. B. Ivanov, E. G. Rozantsev, V. D. Sholle, E. S. Kagan, J.
Macromol. Sci., Part C 1982, 22, 169–202.
[16] T. Kurumada, H. Ohsawa, O. Oda, T. Fujita, T. Toda, T. Yoshioka, J. Polym.
Sci., Part Polym. Chem. 1985, 23, 1477–1491.
[17] H. Zweifel, Stabilization of Polymeric Materials, Springer Berlin Heidelberg,
Berlin, Heidelberg, 1998.
[18] G. Kasza, K. Mosnáčková, A. Nádor, Z. Osváth, T. Stumphauser, G. Szarka,
K. Czaniková, J. Rychlý, Š. Chmela, B. Iván, J. Mosnáček., Eur. Polym. J.
2015, 68, 609–617.
[19] Z. Idris, D. A. Eimer, Energy Procedia 2014, 51, 247–252.
[20] R. J. Hook, Ind. Eng. Chem. Res. 1997, 36, 1779–1790.
[21] P. M. M. Blauwhoff, G. F. Versteeg, W. P. M. Van Swaaij, Chem. Eng. Sci.
1984, 39, 207–225.
[22] K. P. Kepp, Inorg. Chem. 2016, 55, 9461–9470.
[23] The Table presenting the results of this study and the corresponding
figures can be found in the supporting information.
[24] J. P. Das, I. Marek, Chem. Commun. 2011, 47, 4593–4623.
[25] J. B. Arterburn, Tetrahedron 2001, 57, 9765–9788.
[26] A. S. Perlin, in Adv. Carbohydr. Chem. Biochem., Elsevier, 2006, pp. 183–
250.
[49]
[50]
P. Sgarbossa, M. F. C. Guedes da Silva, A. Scarso, R. A. Michelin, A. J. L.
Pombeiro, Inorg. Chim. Acta 2008, 361, 3247–3253.
E. Y. Y. Chan, Q.-F. Zhang, Y.-K. Sau, S. M. F. Lo, H. H. Y. Sung, I. D. Williams,
R. K. Haynes, W.-H. Leung, Inorg. Chem. 2004, 43, 4921–4926.
R. P. Sperline, D. M. Roundhill, Inorg. Chem. 1977, 16, 2612–2617.
R. P. Sperline, W. B. Beaulieu, D. M. Roundhill, Inorg. Chem. 1978, 17,
2032–2035.
S. G. N. Roundhill, D. M. Roundhill, Acta Crystallogr., Sect. B 1982, 38,
2479–2481.
A. Fujii, E. Hagiwara, M. Sodeoka, J. Am. Chem. Soc. 1999, 121, 5450–
5458.
[51]
[52]
[53]
[54]
[55]
J. Bigeault, L. Giordano, I. de Riggi, Y. Gimbert, G. Buono, Org. Lett. 2007,
9, 3567–3570.
[56]
[57]
[58]
S. O. Grim, R. L. Keiter, W. McFarlane, Inorg. Chem. 1967, 6, 1133–1137.
C. J. Cobley, P. G. Pringle, Inorg. Chim. Acta 1997, 265, 107–115.
A suitable crystal was selected and mounted on a SuperNova, Dual, Cu
at home/near, AtlasS2 diffractometer. The crystal was kept at 293.0 K
during data collection. Using Olex2,[58a] the structure was solved with
the ShelXT[58b] structure solution program using Intrinsic Phasing and
refined with the ShelXLc refinement package using Least Squares mini-
mization. Crystallographic data have been deposited to the Cambridge
Crystallographic Data Center (CCDC 1582905). a) O. V. Dolomanov, L. J.
Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Crystallogr.
2009, 42, 339–341; b) G. M. Sheldrick, Acta Crystallogr., Sect. A 2015, 71,
3–8; c) G. M. Sheldrick, Acta Crystallogr., Sect. C 2015, 71, 3–8.
T. Achard, L. Giordano, A. Tenaglia, Y. Gimbert, G. Buono, Organometallics
2010, 29, 3936–3950.
L.-B. Han, N. Choi, M. Tanaka, Organometallics 1996, 15, 3259–3261.
J. Bader, R. J. F. Berger, H.-G. Stammler, N. W. Mitzel, B. Hoge, Chem. Eur.
J. Chem. Weinh. Bergstr. Ger. 2011, 17, 13420–13423.
N. Allefeld, J. Bader, B. Neumann, H.-G. Stammler, N. Ignat'ev, B. Hoge,
Inorg. Chem. 2015, 54, 7945–7952.
D. V. Naik, G. J. Palenik, S. Jacobson, A. J. Carty, J. Am. Chem. Soc. 1974,
96, 2286–2288.
D. E. C. Corbridge, Phosphorus Chemistry, Biochemistry and Technology,
CRC Press, Boca Raton, 2013.
[27] G. Noronha, P. M. Henry, J. Mol. Catal. A 1997, 120, 75–87.
[28] L. Bettucci, C. Bianchini, W. Oberhauser, T.-H. Hsiao, H. M. Lee, J. Mol.
Catal. A 2010, 322, 63–72.
[29] A. J. Ingram, K. L. Walker, R. N. Zare, R. M. Waymouth, J. Am. Chem. Soc.
2015, 137, 13632–13646.
[30] K. Chung, S. M. Banik, A. G. De Crisci, D. M. Pearson, T. R. Blake, J. V.
Olsson, A. J. Ingram, R. N. Zare, R. M. Waymouth, J. Am. Chem. Soc. 2013,
135, 7593–7602.
[31] N. R. Conley, L. A. Labios, D. M. Pearson, C. C. L. McCrory, R. M. Waymouth,
Organometallics 2007, 26, 5447–5453.
[59]
[60]
[61]
[62]
[63]
[64]
[32] L. Bettucci, C. Bianchini, J. Filippi, A. Lavacchi, W. Oberhauser, Eur. J. Inorg.
Chem. 2011, 1797–1805.
Eur. J. Org. Chem. 0000, 0–0
7
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim