10.1002/anie.202013679
Angewandte Chemie International Edition
RESEARCH ARTICLE
[6]
[7]
S. Díez-González, N. Marion, S. P. Nolan, Chem. Rev. 2009, 109, 3612–
3676.
tuning the activity of metal catalysts and very likely a general
concept for the development of new asymmetric transformations
by cooperative NHC/metal catalysis.
a) B. Cardinal-David, D. E. A. Raup, K. A. Scheidt, J. Am. Chem. Soc.
2010, 132, 5345–5347; b) D. E. A. Raup, B. Cardinal-David, D. Holte, K.
A. Scheidt, Nat. Chem. 2010, 2, 766–771.
[8]
a) D. A. DiRocco, T. Rovis, J. Am. Chem. Soc. 2012, 134, 8094−8097;
b) K. Namitharan, T. Zhu, J. Cheng, P. Zheng, X. Li, S. Yang, B.-A. Song,
Y. R. Chi, Nat. Commun. 2014, 5, 3982−3988; c) C. Guo, M. Fleige, D.
Janssen-Müller, C. G. Daniliuc, F. Glorius, J. Am. Chem. Soc. 2016, 138,
7840–7843; d) C. Guo, D. Janssen-Mꢀller, M. Fleige, A. Lerchen, C. G.
Daniliuc, F. Glorius, J. Am. Chem. Soc. 2017, 139, 4443−4451; e) J.
Chen, P. Yuan, L. Wang, Y. Huang, J. Am. Chem. Soc. 2017, 139,
7045−7051. f) S. Singha, T. Patra, C. G. Daniliuc, F. Glorius, J. Am.
Chem. Soc. 2018, 140, 3551−3554; g) Z.-J. Zhang, L. Zhang, R.-L. Geng,
J. Song, X.-H. Chen, L.-Z. Gong, Angew. Chem. Int. Ed. 2019, 58,
12190–12194; Angew. Chem. 2019, 131,12318–12322; h) S. Singha, E.
Serrano, S. Mondal, C. G. Daniliuc, F. Glorius, Nat. Catal. 2020, 3, 48−54;
i) L. Zhou, X. Wu, X. Yang, C. Mou, R. Song, S. Yu, H. Chai, L. Pan, Z.
Jin, Y. R. Chi, Angew. Chem. Int. Ed. 2020, 59, 1557–1561; Angew.
Chem. 2020, 132,1573–1577.
[9]
a) C. Botuha, F. Chemla, F. Ferreira, A. Perez-Luna, Aziridines in natural
product synthesis. In Heterocycles in Natural Product Synthesis; p 3,
2011; b) F. M. D. Ismail, D. O. Levitsky, V. M. Dembitsky, Eur. J. Med.
Chem. 2009, 44, 3373−3387.
[10] a) L. Degennaro, P. Trinchera, R. Luisi, Chem. Rev. 2014, 114,
7881−7929; b) G. S. Singh, Adv. Heterocycl. Chem. 2019, 129, 245–335.
[11] S. Sabir, G. Kumar, V. P. Verma, J. L. Jat, ChemistrySelect 2018, 3,
3702–3711.
Figure 6. Plausible reaction mechanism.
[12] Z. Chai, Synthesis 2020, 52, 1738−1750.
Acknowledgements
[13] a) B. Wu, J. R. Parquette, T. V. RajanBabu, Science 2009, 326, 1662; b)
J. Cockrell, C. Wilhelmsen, H. Rubin, A. Martin, J. B. Morgan, Angew.
Chem. Int. Ed. 2012, 51, 9842–9845; Angew. Chem. 2012, 124, 9980–
9983; c) K. Ohmatsu, Y. Hamajima, T. Ooi, J. Am. Chem. Soc. 2012,
134, 8794−8797; d) K. Ohmatsu, Y. Ando, T. Ooi, J. Am. Chem. Soc.
2013, 135, 18706−18709; e) Y. Xu, K. Kaneko, M. Kanai, M. Shibasaki,
S. Matsunaga, J. Am. Chem. Soc. 2014, 136, 9190−9194; f) M. R.
Monaco, B. Poladura, M. Diaz de Los Bernardos, M. leutzsch, R.
Goddard, B. List, Angew. Chem. Int. Ed. 2014, 53, 7063 –7067; Angew.
Chem. 2014, 126, 7183–7187; g) Z. Chai, Y.-M. Zhu, P.-J. Yang, S.
Wang, S. Wang, Z. Liu, G. Yang, J. Am. Chem. Soc. 2015, 137,
10088−10091; h) C. Ge, R.-R. Liu, J.-R. Gao, Y.-X. Jia, Org. Lett. 2016,
18, 3122−3125; i) Z. Chai, P.-J. Yang, H. Zhang, S. Wang, G. Yang,
Angew. Chem. Int. Ed. 2017, 56, 650−654; Angew. Chem. 2017, 129,
665–669.
We are grateful to the National Natural Science Foundation of China
(grant nos. 21831007 and 21702199), Chinese Academy of Science
(grant no. XDB20000000), the Anhui Provincial Natural Science
Foundation (grant no. 1808085QB30), and the Fundamental
Research Funds for the Central Universities (WK2060190083).
Keywords: N-heterocyclic carbene • copper • cooperative
catalysis • kinetic resolution • dynamic kinetic asymmetric
transformation
[1]
[2]
a) Asymmetric Catalysis on Industrial Scale: Challenges, Approaches
and Solutions, ed. H. U. Blaser, E. Schmidt, VCH, Weinheim, 2004; b) R.
Noyori, Adv. Synth. Catal. 2003, 345, 15–32.
[14] B. P. Woods, M. Orlandi, C.-Y. Huang, M. S. Sigman, A. G. Doyle, J. Am.
Chem. Soc. 2017, 139, 5688−5691.
a) J. M. Keith, J. F. Larrow, E. N. Jacobsen, Adv. Synth. Catal. 2001, 343,
5–26; b) E. Vedejs, M. Jure, Angew. Chem. Int. Ed. 2005, 44, 3974–4001;
Angew. Chem. 2005, 117, 4040–4069; c) H. Pellissier, Adv. Synth. Catal.
2011, 353, 1613–1666.
[15] P.-J. Yang, L. Qi, Z. Liu, G. Yang, Z. Chai, J. Am. Chem. Soc. 2018, 140,
17211−17217.
[16] a) J. Douglas, G. Churchill, A. D. Smith, Synthesis 2012, 44, 2295–2309;
b) R. S. Menon, A. T. Biju, V. Nair, Chem. Soc. Rev. 2015, 44, 5040–
5052.
[3]
[4]
a) J. Steinreiber, K. Faber, H. Griengl, Chem. Eur. J. 2008, 14, 8060–
8072; b) V. Bhat, E. R. Welin, X. Guo, B. M. Stoltz, Chem. Rev. 2017,
117, 4528−4561.
[17] L. D. S. Yadav, V. K. Rai, S. Singh, P. Singh, Tetrahedron Lett. 2010, 51,
1657–1662.
a) D. Enders, O. Niemeier, A. Henseler, Chem. Rev. 2007, 107, 5606–
5655; b) N. Marion, S. Díez-González, S. P. Nolan, Angew. Chem. Int.
Ed. 2007, 46, 2988–3000; Angew. Chem. 2007, 119, 3046–3058; c) X.
Bugaut, F. Glorius, Chem. Soc. Rev. 2012, 41, 3511–3522; d) M. N.
Hopkinson, C. Richter, M. Schedler, F. Glorius, Nature 2014, 510, 485–
496; e) D. M. Flanigan, F. Romanov-Michailidis, N. A. White, T. Rovis,
Chem. Rev. 2015, 115, 9307–9387; f) H. Ohmiya, ACS Catal. 2020, 10,
6862–6869.
[18] a) C. Burstein, F.Glorius, Angew. Chem. Int. Ed. 2004, 43, 6205–6208;
Angew. Chem. 2004, 116, 6331–6334; b) S. S. Sohn, E. L. Rosen, J. W.
Bode, J. Am. Chem. Soc. 2004, 126,14370–14371; c) C. Burstein, S.
Tschan, X. Xie, F. Glorius, Synthesis 2006, 2418–2439; d) L. Wang, S.
Li, M. Blümel, A. R. Philipps, A. Wang, R. Puttreddy, K. Rissanen, D.
Enders, Angew. Chem. Int. Ed. 2016, 55, 11110–11114; Angew. Chem.
2016, 128,11276–11280; e) L. Wang, S. Li, M. Blümel, R. Puttreddy, A.
Peuronen, K. Rissanen, D. Enders, Angew. Chem. Int. Ed. 2017, 56,
8516–8521; Angew. Chem. 2017, 129, 8636–8641.
[5]
a) D. T. Cohen, K. A. Scheidt, Chem. Sci. 2012, 3, 53–57; b) M. H. Wang,
K. A. Scheidt, Angew. Chem. Int. Ed. 2016, 55, 14912–14922; Angew.
Chem. 2016, 128, 15134–15145; c) H.-Y. Li, H. Lu, J.-Y. Liu, P.-F. Xu,
Acta Chim. Sinica 2018, 76, 831–837; d) K. Nagao, H. Ohmiya, Top. Curr.
Chem. 2019, 377, 35.
[19] a) B. Yu, D.-Q. Yu, H.-M. Liu, Eur. J. Med. Chem. 2015, 97, 673–698; b)
N. Ye, H. Chen, E. A. Wold, P.-Y. Shi, J. Zhou, ACS Infect. Dis. 2016, 2,
382–392.
This article is protected by copyright. All rights reserved.