Full Paper
V = 2575.3(4) A3, Z = 12, ρ(calcd.) = 1.208 Mg m3, F(000) = 1008,
θmax = 30.56°, μ = 0.251 mm–1, 16120 reflections measured, 3950
unique reflections [Rint = 0.026] for structure solution and refine-
ment with 150 parameters and one restraint, R1 = 0.040 [for 2846
reflections with I > 2σ(I)], wR2 = 0.114, largest diff. peak and hole:
Dalton Trans. 2007, 5505; e) C. Ganter, in: Phosphorus Ligands, in: Asym-
metric Catalysis (Ed.: A. Börner), Wiley-VCH, Weinheim, Germany, 2008;
p. 393–406; f) J. I. Bates, J. Dugal-Tessier, D. P. Gates, Dalton Trans. 2010,
39, 3151; g) M. Nicolas, G. C. Fu, in: Chiral Ferrocenes in Asymmetric Cataly-
sis (Eds.: L.-X. Dai, X.-L. Hou), Wiley-VCH, Weinheim, Germany, 2010, ch.
11, p. 307–335.
0.435 and –0.292 e Å–3
.
[4] For selected reviews, see: a) M. Hissler, P. W. Dyer, R. Réau, in: Topics in
Current Chemistry, vol. 250 (Ed.: J.-P. Majoral), Springer, Berlin, 2005, p.
127–163; b) P. W. Dyer, R. Réau, in: Functional Organic Materials: Synthe-
ses, Strategies, and Applications (Eds.: T. J. J. Müller, U. H. F. Bunz), Wiley-
VCH, Weinheim, Germany, 2007, p. 119–178; c) P. W. Siu, D. P. Gates, in:
Conjugated Polymer Synthesis: Methods and Reactions (Ed.: Y. Chujo),
Wiley-VCH, Weinheim, Germany, 2010, p. 215–227; d) J. D. Protasiewicz,
in: Comprehensive Inorganic Chemistry II, vol. 1 (Eds.: J. Reedijk, K. Poep-
pelmeier), Elsevier, Amsterdam, 2013, p. 325–348.
Compound 5c: Yellow crystals, C21H25N2P, M: 336.40 g mol–1, crystal
size: 0.23 × 0.21 × 0.10 mm, monoclinic, space group P21/n, a =
8.2558(9) Å, b = 14.6092(17) Å, c = 16.1057(14) Å, β = 102.010(4)°,
V = 1900.0(3) A3, Z = 4, ρ(calcd.) = 1.176 Mg m3, F(000) = 720, θmax
=
27.48°, μ = 0.149 mm–1, 17209 reflections measured, 4341 unique
reflections [Rint = 0.074] for structure solution and refinement with
230 parameters, R1 = 0.056 [for 2439 reflections with I > 2σ(I)],
wR2 = 0.134, largest diff. peak and hole: 0.272 and –0.321 e Å–3
.
[5] P. P. Power, J. Organomet. Chem. 2004, 689, 3904.
[6] a) K. Dimroth, P. Hoffmann, Angew. Chem. Int. Ed. Engl. 1964, 3, 384;
Angew. Chem. 1964, 76, 433; b) K. Dimroth, Top. Curr. Chem. 1973, 38, 1.
[7] D. Schmid, S. Loscher, D. Gudat, D. Bubrin, I. Hartenbach, Th. Schleid, Z.
Benkö, L. Nyulászi, Chem. Commun. 2009, 830–832.
Compound 6a[OTf]: Bright yellow crystals, C10H16N4P·CF3O3S, M:
372.31 g mol–1, crystal size: 0.36 × 0.30 × 0.24 mm, triclinic, space
group P1, a = 11.6579(9) Å, b = 12.3283(9) Å, c = 12.9947(10) Å, α =
¯
116.937(3)°, β = 102.470(4)°, γ = 91.388(4)°, V = 1609.7(2) A3, Z = 4,
ρ(calcd.) = 1.536 Mg m3, F(000) = 768, θmax = 27.48°, μ = 0.350 mm–
1, 65509 reflections measured, 7368 unique reflections [Rint = 0.021]
for structure solution and refinement with 415 parameters, R1 =
0.028 [for 6673 reflections with I > 2σ(I)], wR2 = 0.074, largest diff.
[8] G. Becker, Z. Anorg. Allg. Chem. 1976, 423, 242.
[9] K. Issleib, E. Leißring, M. Riemer, H. Oehme, Z. Chem. 1983, 23, 99–100.
[10] In a few special cases, there is precedent for the direct access of multiply
bonded species from elemental phosphorus, for example, P5–, see: a) M.
Baudler, D. Düster, D. Ouzounis, Z. Anorg. Allg. Chem. 1987, 544, 47; b)
M. Baudler, S. Akpapoglou, D. Ouzounis, F. Wasgestian, B. Meinigke, H.
Budzikiewicz, H. Münster, Angew. Chem. Int. Ed. Engl. 1988, 27, 280–281;
Angew. Chem. 1988, 100, 288.
[11] J. D. Masuda, W. W. Schoeller, B. Donnadieu, G. Bertrand, Angew. Chem.
Int. Ed. 2007, 46, 7052–7055; Angew. Chem. 2007, 119, 7182–7185.
[12] J. D. Masuda, W. W. Schoeller, B. Donnadieu, G. Bertrand, J. Am. Chem.
Soc. 2007, 129, 14180–14181.
peak and hole: 0.967 and –0.330 e Å–3
.
Compound 6b[I]: Bright yellow crystals, C14H24IN4P, M:
406.24 g mol–1, crystal size: 0.26 × 0.22 × 0.20 mm, monoclinic,
space group P21/n, a = 11.7734(5) Å, b = 11.4627(5) Å, c =
13.1048(6) Å, β = 90.714(2)°, V = 1768.42(13) A3, Z = 4, ρ(calcd.) =
1.526 Mg m3, F(000) = 816, θmax = 36.35°, μ = 1.899 mm–1, 68773
reflections measured, 8502 unique reflections [Rint = 0.042] for
structure solution and refinement with 189 parameters, R1 = 0.029
[for I > 2σ(I)], wR2 = 0.061, largest diff. peak and hole: 2.067 and
[13]
[14]
[15]
[16]
O. Back, G. Kuchenbeiser, B. Donnadieu, G. Bertrand, Angew. Chem. Int.
Ed. 2009, 48, 5530–5533; Angew. Chem. 2009, 121, 5638.
C. D. Martin, C. M. Weinstein, C. E. Moore, A. L. Rheingold, G. Bertrand,
Chem. Commun. 2013, 49, 4486–4488.
For a review, see: D. Martin, M. Soleilhavoup, G. Bertrand, Chem. Sci.
2011, 2, 389–399.
a) H. J. Schönherr, H. W. Wanzlick, Chem. Ber. 1970, 103, 1037–1046; b)
N. I. Korotkikh, G. F. Rayenko, O. P. Shvaika, T. M. Pekhtereva, A. H. Cowley,
J. N. Jones, C. L. B. MacDonald, J. Org. Chem. 2003, 68, 5762–5765; c) W.
Zuo, P. Braunstein, Dalton Trans. 2012, 41, 636–643; d) P. K. Majhi, S.
Sauerbrey, G. Schnakenburg, A. J. Arduengo, R. Streubel, Inorg. Chem.
2012, 51, 10408–10416.
–1.231 e Å–3
.
Supporting Information (see footnote on the first page of this
article): Synthetic procedures for deuterated 1,3-dimethylimid-
azolium salts; 31P NMR spectra of reaction mixtures of 4a/KOtBu/P4
and 4c/KOtBu/P4 obtained under different reaction conditions; CP/
MAS NMR spectra of the solid residue of a reaction of 4a/KOtBu/
P4 before and after extraction with CH2Cl2; representations of the
molecular structures of 5b[I], 5c[I] and 6b[I], and the preliminary
molecular structure of 6a[I].
[17]
B. D. Ellis, C. A. Dyker, A. Decken, C. L. B. Macdonald, Chem. Commun.
2005, 1965–1967.
[18]
[19]
B. D. Ellis, C. L. B. Macdonald, Coord. Chem. Rev. 2007, 251, 936–973.
a) K. Hansen, T. Szilvási, B. Blom, S. Inoue, J. Epping, M. Driess, J. Am.
Chem. Soc. 2013, 135, 11795–11798.
A. M. Tondreau, Z. Benkö, J. R. Harmer, H. Grützmacher, Chem. Sci. 2014,
5, 1545–1554.
M. Bispinghoff, A. M. Tondreau, H. Grützmacher, C. A. Faradji, P. G. Pringle,
Dalton Trans. 2015, DOI: 10.1039/C5DT01741F.
H. Schmidbaur, A. Bauer, Phosphorus Sulfur Silicon Relat. Elem. 1995, 102,
217–219.
O. Back, M. Henry-Ellinger, C. D. Martin, D. Martin, G. Bertrand, Angew.
Chem. Int. Ed. 2013, 52, 2939–2943; Angew. Chem. 2013, 125, 3011.
A. Doddi, D. Bockfeld, T. Bannenberg, P. G. Jones, M. Tamm, Angew. Chem.
Int. Ed. 2014, 53, 13568–13572; Angew. Chem. 2014, 126, 13786–13790.
a) J. Schmedt auf der Günne, S. Kaczmarek, L. v. Wüllen, H. Eckert, D.
Paschke, A. J. Foecker, W. Jeitschko, J. Solid State Chem. 1999, 147, 341;
b) K. Eichele, R. E. Wasylishen, J. F. Corrigan, N. J. Taylor, A. J. Carty, K. W.
Feindel, G. M. Bernard, J. Am. Chem. Soc. 2002, 124, 1541; c) A. Pfitzner,
M. F. Bräu, J. Zweck, G. Brunklaus, H. Eckert, Angew. Chem. Int. Ed. 2004,
43, 4228; Angew. Chem. 2004, 116, 4324; d) M. Scheer, L. J. Gregoriades,
M. Zabel, M. Sierka, L. Zhang, H. Eckert, Eur. J. Inorg. Chem. 2007, 2775;
e) T. Wiegand, H. Eckert, S. Grimme, D. Hoppe, M. Ruck, Chem. Eur. J.
2011, 17, 8739–8748.
Acknowledgments
[20]
[21]
[22]
[23]
[24]
[25]
The authors thank Dr. W. Frey (Institute of Organic Chemistry,
University of Stuttgart, Germany) for the collection of X-ray data
sets. Furthermore, the University of Stuttgart, Germany, ETH Zü-
rich, Switzerland, and the European Union (Marie Curie ITN Sus-
Phos, grant agreement number 317404) are acknowledged for
financial support.
Keywords: Carbenes · Phosphorus · Phosphaalkenes · P–P
activation · Nitrogen heterocycles
[1] W. F. Dahsent, Nonexistent Compounds, Marcel Dekker, New York, 1965.
[2] For overviews, see: a) P. P. Power, Chem. Rev. 1999, 99, 3463–3503; b)
R. C. Fischer, P. P. Power, Chem. Rev. 2010, 110, 3877–3923.
[3] For selected reviews, see: a) L. Weber, Angew. Chem. Int. Ed. 2002, 41,
563; Angew. Chem. 2002, 114, 583; b) P. Le Floch, Coord. Chem. Rev. 2006,
250, 627; c) G. Fu, Acc. Chem. Res. 2006, 39, 853; d) C. Müller, D. Vogt,
[26]
A single-crystal XRD study was also performed on 6a[I]. Although the
structure could be solved, satisfactory refinement remained unfeasible
Eur. J. Inorg. Chem. 2016, 649–658
657
© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim