Communication
ChemComm
1H NMR spectra of cis-/trans-6 in CDCl3 also indicate the
complete cis - trans conversion (Fig. S28, ESI†). As discussed
above, different from most alkene compounds, the initial cis
isomers are thermally stabilized in a preferential conformation
by the phenyl substituents and Sꢀ ꢀ ꢀp interactions, and they can
act as promising alkene-azoheteroaryl photoswitches in a wide
range of optical applications.
In summary, azoheteroaryl and substituted phenyl units
were implanted into each side of the –CHQCH– unit to build
a series of alkene-azoheteroaryl molecules, in which cis-3, cis-4,
cis-5/trans-5, cis-6/trans-6, and trans-7 alkenes could be gener-
ated by direct synthesis. It was seen that pure cis isomers 3 and
4 were stabilized by intramolecular Sꢀ ꢀ ꢀp interactions with the
assistance of synergistic substituents and D–p–A effects. It should
be noted that this kind of thiophene-based heteroaromatic struc-
ture involving Sꢀꢀꢀp interactions was not considered for alkene-
containing molecules prior to this research. Further reversible cis
" trans isomerization results suggest that cis- and trans isomers of
3–4 could act as potential bistable molecular switches. It is believed
that the current study opens a new way for tuning the conforma-
tions and photochromic switches of asymmetric alkenes.
M. Frigoli and G. H. Mehl, Org. Lett., 2010, 12, 4090–4093;
(h) J. Andreasson, U. Pischel, S. D. Straight, T. A. Moore, A. L.
Moore and D. Gust, J. Am. Chem. Soc., 2011, 133, 11641–11648;
(i) P. Lentes, E. Stadler, F. Rohricht, A. Brahms, J. Grobner,
F. D. Sonnichsen, G. Gescheidt and R. Herges, J. Am. Chem. Soc.,
2019, 141, 13592–13600; ( j) Z. W. Zhang, W. H. Wang, P. P. Jin,
J. D. Xue, L. Sun, J. H. Huang, J. J. Zhang and H. Tian, Nat. Commun.,
2019, 10, 4232.
3 (a) E. Merino, Chem. Soc. Rev., 2011, 40, 3835–3853; (b) Z. Mahimwalla,
K. G. Yager, J. Mamiya, A. Shishido, A. Priimagi and C. J. Barrett, Polym.
Bull., 2012, 69, 967–1006.
4 C. Boulegue, M. Loweneck, C. Renner and L. Moroder, ChemBioChem,
2007, 8, 591–594.
5 (a) M. Erdelyi, M. Varedian, C. Skold, I. B. Niklasson, J. Nurbo,
A. Persson, J. Bergquist and A. Gogoll, Org. Biomol. Chem., 2008, 6,
4356–4373; (b) M. Erdelyi, A. Karlen and A. Gogoll, Chem. – Eur. J.,
2006, 12, 403–412.
6 H. Meier, Angew. Chem., Int. Ed. Engl., 1992, 31, 1399–1420.
7 H. K. Cammenga, V. N. Emel’yanenko and S. P. Verevkin, Ind. Eng.
Chem. Res., 2009, 48, 10120–10128.
8 L. M. Salonen, M. Ellermann and F. Diederich, Angew. Chem., Int.
Ed., 2011, 50, 4808–4842.
9 (a) N. S. Scrutton and A. R. C. Raine, Biochem. J., 1996, 319, 1–8;
(b) S. C. R. Lummis, D. L. Beene, N. J. Harrison, H. A. Lester and
D. A. Dougherty, Chem. Biol., 2005, 12, 993–997; (c) X. Xiu,
N. L. Puskar, J. A. P. Shanata, H. A. Lester and D. A. Dougherty,
Nature, 2009, 458, 534–537; (d) J. Calbo, C. E. Weston, A. J. P. White,
H. S. Rzepa, J. Contreras-Garcia and M. J. Fuchter, J. Am. Chem. Soc.,
2017, 139, 1261–1274.
10 A. Bisai and V. K. Singh, Org. Lett., 2006, 8, 2405–2408.
11 C. Slavor, C. Yang, A. H. Heindl, H. A. Wegner, A. Dreuw and
J. Wachtveitl, Angew. Chem., Int. Ed., 2019, 58, 2–10.
12 (a) A. K. Lewis, K. M. Dunleavy, T. L. Senkow, C. Her, B. T. Horn,
M. A. Jersett, R. Mahling, M. R. McCarthy, G. T. Perell, C. C. Valley,
C. B. Karim, J. L. Gao, W. C. K. Pomerantz, D. D. Thomas,
A. Cembran, A. Hinderliter and J. N. Sachs, Nat. Chem. Biol., 2016,
12, 860–866; (b) B. R. Beno, K. S. Yeung, M. D. Bartberger,
L. D. Pennington and N. A. Meanwell, J. Med. Chem., 2015, 58,
4383–4438; (c) K. N. M. Daeffler, H. A. Lester and D. A. Dougherty,
J. Am. Chem. Soc., 2012, 134, 14890–14896; (d) L. M. Salonen,
M. Ellermann and F. Diederich, Angew. Chem., Int. Ed., 2011, 50,
4808–4842; (e) T. J. Mooibroek, P. Gamez and J. Reedijk, CrystEng-
Comm, 2008, 10, 1501–1515; ( f ) J. C. Aledo, F. R. Canton and
F. J. Veredas, Sci. Rep., 2015, 5, 16955.
13 (a) R. J. Zauhar, C. L. Colbert, R. S. Morgan and W. J. Welsh,
Biopolymers, 2000, 53, 233–248; (b) C. R. Forbes, S. K. Sinha,
H. K. Ganguly, S. Bai, G. P. A. Yap, S. Patel and N. J. Zondlo,
J. Am. Chem. Soc., 2017, 139, 1842–1855; (c) A. L. Ringer, A. Senenko
and C. D. Sherrill, Protein Sci., 2007, 16, 2216–2223; (d) T. P. Tauer,
M. E. Derrick and C. D. J. Sherrill, J. Phys. Chem. A, 2005, 109,
191–196.
This work was financially supported by the National Natural
Science Foundation of China (21871133 and 21601060), the
Natural Science Foundation of Jiangsu Province (BK20171334),
the Natural Science Foundation of the Jiangsu Higher Educa-
tion Institutions of China (19KJB150022), and the Science,
Technology and Innovation Commission of Shenzhen Munici-
pality (JCYJ20180307153251975).
Conflicts of interest
There are no conflicts to declare.
Notes and references
1 (a) R. Gostl, A. Senf and S. Hecht, Chem. Soc. Rev., 2014, 43,
1982–1996; (b) D. Bleger and S. Hecht, Angew. Chem., Int. Ed., 2015,
54, 11338–11349; (c) W. Szymanski, J. M. Beierle, H. A. V. Kistemaker,
W. A. Velema and B. L. Feringa, Chem. Rev., 2013, 113, 6114–6178;
(d) B. L. Feringa and W. R. Browne, Molecular Switches, VCH,
Weinheim, 2011; (e) M. M. Russew and S. Hecht, Adv. Mater., 2010,
22, 3348–3360; ( f ) T. J. Kucharski, N. Ferralis, A. M. Kolpak,
J. O. Zheng, D. G. Nocera and J. C. Grossman, Nat. Chem., 2014, 6,
441–447; (g) D. Zhitomirsky, E. Cho and J. C. Grossman, Adv. Energy
Mater., 2016, 6, 1502006; (h) Y. Feng, H. Liu, W. Luo, E. Liu, N. Zhao,
K. Yoshino and W. Feng, Sci. Rep., 2013, 3, 3260; (i) A. K. Saydjari,
P. Weis and S. Wu, Adv. Energy Mater., 2016, 1601622.
2 (a) Z. Y. Wang, E. K. Todd, X. S. Meng and J. P. Gao, J. Am. Chem.
Soc., 2005, 127, 11552–11553; (b) M. Kawamoto, T. Aoki and
T. Wada, Chem. Commun., 2007, 930–932; (c) M. C. Carreno,
I. Garcia, I. Nunez, I. Merino, M. Ribagorda, S. Pieraccini and
G. P. Spada, J. Am. Chem. Soc., 2007, 129, 7089–7100; (d) K. Takai-
shi, M. Kawamoto, K. Tsubaki and T. Wada, J. Org. Chem., 2009, 74,
5723–5726; (e) A. J. Myles, T. J. Wigglesworth and N. R. Branda, Adv.
Mater., 2003, 15, 745–748; ( f ) M. Frigoli and G. H. Mehl, Angew.
Chem., Int. Ed., 2005, 44, 5048–5052; (g) S. Delbaere, G. Vermeersch,
14 (a) C. E. Weston, R. D. Richardson, P. R. Haycock, A. J. P. White and
M. J. Fuchter, J. Am. Chem. Soc., 2014, 136, 11878–11881; (b) A. A. Beharry,
O. Sadovski and G. A. Woolley, J. Am. Chem. Soc., 2011, 133, 19684–19687;
(c) P. Chakrabarti and R. Bhattacharyya, Prog. Biophys. Mol. Biol., 2007, 95,
83–137.
´
´
15 (a) E. R. Johnson, S. Keinan, P. Mori-Sanchez, J. ContrerasGarcıa,
A. J. Cohen and W. Yang, J. Am. Chem. Soc., 2010, 132, 6498–6506;
´
(b) J. Contreras-Garcıa, E. R. Johnson, S. Keinan, R. Chaudret,
J.-P. Piquemal, D. N. Beratan and W. Yang, J. Chem. Theory Comput.,
2011, 7, 625–632.
16 (a) T. Lu and F. Chen, J. Comput. Chem., 2012, 33, 580–592; (b) R. F. W.
Bader, Chem. Rev., 1991, 91, 893–928; (c) L. Checinska, S. J. Grabowski
and M. Małecka, J. Phys. Org. Chem., 2003, 16, 213–219.
17 X. L. Zhao, J. Geng, H. F. Qian and W. Huang, Dyes Pigm., 2017, 147,
318–326.
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2019