Page 9 of 11
Journal of the American Chemical Society
(6) (a) Huang, G.; Cui, F.; Yu, F.; Lu, H.; Zhang, M.; Tang, H.; Peng, Z.,
(No. 21572190 and 21778044), Shenzhen Science and Tech-
nology Program (JCYJ20170413141047772,
JCYJ20180507181659781), the Synthetic Biology Research &
Development Programme (SBP) of National Research Founda-
tion (SBP-P4 and SBP-P8) of Singapore.
Sirtuin-4 (SIRT4) is downregulated and associated with some
clinicopathological features in gastric adenocarcinoma. Biomed.
Pharmacother. 2015, 72, 135-139; (b) Miyo, M.; Yamamoto, H.;
Konno, M.; Colvin, H.; Nishida, N.; Koseki, J.; Kawamoto, K.; Ogawa,
H.; Hamabe, A.; Uemura, M.; Nishimura, J.; Hata, T.; Takemasa, I.;
Mizushima, T.; Doki, Y.; Mori, M.; Ishii, H., Tumour-suppressive
function of SIRT4 in human colorectal cancer. Br. J. Cancer 2015,
113, 492-499; (c) Pocernich, C. B.; Butterfield, D. A., Acrolein
inhibits NADH-linked mitochondrial enzyme activity: Implications
for Alzheimer's disease. Neurotoxic. Res. 2003, 5, 515-519.
(7) Feldman, J. L.; Baeza, J.; Denu, J. M., Activation of the protein
deacetylase SIRT6 by long-chain fatty acids and widespread
deacylation by mammalian sirtuins. J. Biol. Chem. 2013, 288,
31350-31356.
1
2
3
4
5
6
7
8
ABBREVIATIONS
HDAC, histone deacetylase; Sirt2, Sirtuin 2; KPlip: activity
based protein profiling probe for lipoylated lysine proteome
profiling; KTlip: fluorescent turn-on probe for delipoylation
activity profiling; KAlip: lipoylated peptides for delipoylation
activity profiling
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(8) Pannek, M.; Simic, Z.; Fuszard, M.; Meleshin, M.; Rotili, D.; Mai,
A.; Schutkowski, M.; Steegborn, C., Crystal structures of the
mitochondrial deacylase Sirtuin 4 reveal isoform-specific acyl
recognition and regulation features. Nat. Commun. 2017, 8, 1513.
(9) (a) Yang, T.; Li, X. M.; Bao, X.; Fung, Y. M.; Li, X. D., Photo-lysine
captures proteins that bind lysine post-translational modifications.
Nat. Chem. Biol. 2016, 12, 70-72; (b) Xie, Y.; Ge, J.; Lei, H.; Peng, B.;
Zhang, H.; Wang, D.; Pan, S.; Chen, G.; Chen, L.; Wang, Y.; Hao, Q.; Yao,
S. Q.; Sun, H., Fluorescent Probes for Single-Step Detection and
Proteomic Profiling of Histone Deacetylases. J. Am. Chem. Soc. 2016,
138, 15596-15604; (c) Rao, V. S.; Srinivas, K.; Sujini, G. N.; Kumar,
G. N., Protein-protein interaction detection: methods and analysis.
Int. J. Proteomics 2014, 2014, 147648.
(10) (a) Tamura, T.; Tsukiji, S.; Hamachi, I., Native FKBP12
Engineering by Ligand-Directed Tosyl Chemistry: Labeling
Properties and Application to Photo-Cross-Linking of Protein
Complexes in Vitro and in Living Cells. J. Am. Chem. Soc. 2012, 134 ,
2216-2226; (b) Li, Z.; Wang, D.; Li, L.; Pan, S.; Na, Z.; Tan, C. Y.; Yao,
S. Q., "Minimalist" cyclopropene-containing photo-cross-linkers
suitable for live-cell imaging and affinity-based protein labeling. J.
Am. Chem. Soc. 2014, 136, 9990-9998; (c) Li, Z.; Hao, P.; Li, L.; Tan,
C. Y.; Cheng, X.; Chen, G. Y.; Sze, S. K.; Shen, H. M.; Yao, S. Q., Design
and synthesis of minimalist terminal alkyne-containing diazirine
photo-crosslinkers and their incorporation into kinase inhibitors
for cell- and tissue-based proteome profiling. Angew. Chem., Int. Ed.
Engl. 2013, 52, 8551-8556; (d) Nomura, D. K.; Dix, M. M.; Cravatt,
B. F., Activity-based protein profiling for biochemical pathway
discovery in cancer. Nat. Rev. Cancer 2010, 10, 630-638; (e) Cravatt,
B. F.; Wright, A. T.; Kozarich, J. W., Activity-Based Protein Profiling:
From Enzyme Chemistry to Proteomic Chemistry. Annu. Rev.
Biochem. 2008, 77, 383-414.
(11) (a) Houtkooper, R. H.; Pirinen, E.; Auwerx, J., Sirtuins as
regulators of metabolism and healthspan. Nat. Rev. Mol. Cell Biol.
2012, 13, 225-238; (b) Gallinari, P.; Di Marco, S.; Jones, P.; Pallaoro,
M.; Steinkuhler, C., HDACs, histone deacetylation and gene
transcription: from molecular biology to cancer therapeutics. Cell
Res. 2007, 17, 195-211; (c) Wolffe, A. P., Histone Deacetylase--A
Regulator of Transcription. Science 1996, 272, 371-372.
(12) (a) Li, L.; Shi, L.; Yang, S.; Yan, R.; Zhang, D.; Yang, J.; He, L.; Li,
W.; Yi, X.; Sun, L.; Liang, J.; Cheng, Z.; Shi, L.; Shang, Y.; Yu, W., SIRT7
is a histone desuccinylase that functionally links to chromatin
compaction and genome stability. Nat. Commun. 2016, 7, 12235;
(b) Jiang, H.; Khan, S.; Wang, Y.; Charron, G.; He, B.; Sebastian, C.; Du,
J.; Kim, R.; Ge, E.; Mostoslavsky, R.; Hang, H. C.; Hao, Q.; Lin, H.,
SIRT6 regulates TNF-α secretion through hydrolysis of long-chain
fatty acyl lysine. Nature 2013, 496, 110-113; (c) Du, J.; Zhou, Y.; Su,
X.; Yu, J. J.; Khan, S.; Jiang, H.; Kim, J.; Woo, J.; Kim, J. H.; Choi, B. H.;
He, B.; Chen, W.; Zhang, S.; Cerione, R. A.; Auwerx, J.; Hao, Q.; Lin, H.,
Sirt5 Is a NAD-Dependent Protein Lysine Demalonylase and
Desuccinylase. Science 2011, 334, 806-809.
REFERENCES
(1) (a) Walsh, C. T.; Garneau-Tsodikova, S.; Gatto, G. J., Jr., Protein
posttranslational modifications: the chemistry of proteome
diversifications. Angew. Chem., Int. Ed. Engl. 2005, 44, 7342-7372;
(b) Huang, H.; Lin, S.; Garcia, B. A.; Zhao, Y., Quantitative proteomic
analysis of histone modifications. Chem. Rev. 2015, 115, 2376-2418;
(c) Müller, M. M.; Muir, T. W., Histones: At the Crossroads of Peptide
and Protein Chemistry. Chem. Rev. 2015, 115, 2296-2349; (d) Wu,
Z.; Connolly, J.; Biggar, K. K., Beyond histones – the expanding
roles of protein lysine methylation. FEBS J. 2017, 2732-2744.
(2) (a) Zhang, Z.; Tan, M.; Xie, Z.; Dai, L.; Chen, Y.; Zhao, Y.,
Identification of lysine succinylation as a new post-translational
modification. Nat. Chem. Biol. 2010, 7, 58; (b) Tan, M.; Luo, H.; Lee,
S.; Jin, F.; Yang, J. S.; Montellier, E.; Buchou, T.; Cheng, Z.; Rousseaux,
S.; Rajagopal, N.; Lu, Z.; Ye, Z.; Zhu, Q.; Wysocka, J.; Ye, Y.; Khochbin,
S.; Ren, B.; Zhao, Y., Identification of 67 histone marks and histone
lysine crotonylation as a new type of histone modification. Cell
2011, 146, 1016-1028; (c) Dai, L.; Peng, C.; Montellier, E.; Lu, Z.;
Chen, Y.; Ishii, H.; Debernardi, A.; Buchou, T.; Rousseaux, S.; Jin, F.;
Sabari, B. R.; Deng, Z.; Allis, C. D.; Ren, B.; Khochbin, S.; Zhao, Y.,
Lysine 2-hydroxyisobutyrylation is a widely distributed active
histone mark. Nat. Chem. Biol. 2014, 10, 365-370; (d) Xie, Z.; Zhang,
D.; Chung, D.; Tang, Z.; Huang, H.; Dai, L.; Qi, S.; Li, J.; Colak, G.; Chen,
Y.; Xia, C.; Peng, C.; Ruan, H.; Kirkey, M.; Wang, D.; Jensen, Lindy M.;
Kwon, Oh K.; Lee, S.; Pletcher, Scott D.; Tan, M.; Lombard, David B.;
White, Kevin P.; Zhao, H.; Li, J.; Roeder, Robert G.; Yang, X.; Zhao, Y.,
Metabolic Regulation of Gene Expression by Histone Lysine β-
Hydroxybutyrylation. Mol. Cell 2016, 62, 194-206.
(3) (a) Wilkins, M. R.; Gasteiger, E.; Gooley, A. A.; Herbert, B. R.;
Molloy, M. P.; Binz, P.-A.; Ou, K.; Sanchez, J.-C.; Bairoch, A.; Williams,
K. L.; Hochstrasser, D. F., High-throughput mass spectrometric
discovery of protein post-translational modifications11Edited by R.
Huber. J. Mol. Biol. 1999, 289, 645-657; (b) Spalding, M. D.; Prigge,
S. T., Lipoic Acid Metabolism in Microbial Pathogens. Microbiol. Mol.
Biol. Rev. 2010, 74, 200-228; (c) Mathias, Rommel A.; Greco,
Todd M.; Oberstein, A.; Budayeva, Hanna G.; Chakrabarti, R.;
Rowland, Elizabeth A.; Kang, Y.; Shenk, T.; Cristea, Ileana M., Sirtuin
4 Is a Lipoamidase Regulating Pyruvate Dehydrogenase Complex
Activity. Cell 2014, 159, 1615-1625; (d) Bheda, P.; Jing, H.;
Wolberger, C.; Lin, H., The Substrate Specificity of Sirtuins. Annu.
Rev. Biochem. 2016, 85, 405-429; (e) Rowland, E. A.; Snowden, C.
K.; Cristea, I. M., Protein lipoylation: an evolutionarily conserved
metabolic regulator of health and disease. Curr. Opin. Chem. Biol.
2018, 42, 76-85.
(4) Perham, R. N., Swinging Arms and Swinging Domains in
Multifunctional Enzymes: Catalytic Machines for Multistep
Reactions. Annu. Rev. Biochem. 2000, 69, 961-1004.
(5) Naiyanetr, P.; Butler, J. D.; Meng, L.; Pfeiff, J.; Kenny, T. P.;
Guggenheim, K. G.; Reiger, R.; Lam, K.; Kurth, M. J.; Ansari, A. A.;
Coppel, R. L.; López-Hoyos, M.; Gershwin, M. E.; Leung, P. S. C.,
Electrophile-modified lipoic derivatives of PDC-E2 elicits anti-
mitochondrial antibody reactivity. J. Autoimmun. 2011, 37, 209-
216.
(13) Huang, R.; Holbert, M. A.; Tarrant, M. K.; Curtet, S.; Colquhoun,
D. R.; Dancy, B. M.; Dancy, B. C.; Hwang, Y.; Tang, Y.; Meeth, K.;
Marmorstein, R.; Cole, R. N.; Khochbin, S.; Cole, P. A., Site-Specific
ACS Paragon Plus Environment