Dalton Transactions
Paper
(79 MHz, CDCl3): δ −42.9 (s); MS (ESI): m/z 914.2942 [p-vinyD4 +
H2O]+.
2012, 2, 1539; (b) B. P. S. Chauhan, A. Sarkar and
M. Chauhan, in New and Future Developments in Catalysis,
Catalysis by Nanoparticles, ed. S. L. Suib, Elsevier B. V.,
2013, ch. 16, p. 357.
3 (a) W. Sattler and G. Parkin, J. Am. Chem. Soc., 2012, 134,
17462; (b) J. M. Brunel, Int. J. Hydrogen Energy, 2010, 35,
3401.
4 (a) W. Li, A. Wang, X. Yang, Y. Huang and T. Zhang, Chem.
Commun., 2012, 48, 9183; (b) J. John, E. Gravel, A. Hagege,
H. Li, T. Gacoin and E. Doris, Angew. Chem., Int. Ed., 2011,
50, 7533; (c) N. Asao, Y. Ishikawa, N. Hatakeyama,
Menggenbateer, Y. Yamamoto, M. Chen, W. Zhang and
A. Inoue, Angew. Chem., Int. Ed., 2010, 49, 10093.
5 (a) E. A. Ison, R. A. Corbin and M. M. Abu-Omar, J. Am.
Chem. Soc., 2005, 127, 11938; (b) M. Yu, H. Jing and X. Fu,
Inorg. Chem., 2013, 52, 10741.
6 (a) B. P. S. Chauhan, A. Sarkar, M. Chauhan and A. Roka,
Appl. Organomet. Chem., 2009, 23, 385; (b) Y. Lee,
D. Seomoon, S. Kim, H. Han, S. Chang and P. H. Lee,
J. Org. Chem., 2004, 69, 1741.
Hydrolysis of diethylsilane.16 12 h at 40 °C, colorless oil,
83% yield. A mixture containing EtD3, EtD4 and EtD5 was
obtained, and the ratio of EtD3/EtD4/EtD5 = 22/67/11 was esti-
1
mated by GC-MS. H NMR (400 MHz, C6D6): δ 1.10–1.06 (t, J =
8 Hz, CH2CH3), 0.66–0.64 (q, J = 8 Hz, CH2CH3). GC-MS: m/z
481.2 [D5 − C2H5]+, 379.0 [D4 − C2H5]+, 277.0 [D3 − C2H5]+.
Hydrolysis of vinylphenylsilane.17 12 min at room tempera-
ture, colorless oil, 88% yield. A mixture containing vinyD3 and
vinyD4 was obtained, and the ratio of vinyD3 and vinyD4 = 5/95
was estimated by GC-MS. 1H NMR (400 MHz, C6D6):
δ 7.93–7.62, 7.25–7.02 (C6H5), 6.39–5.75 (C2H3). MS (EI): m/z
714.0 [vinyD5 − C2H3]+, 565.1 [vinyD4 − C2H3]+.
Hydrolysis of allylphenylsilane. 16 min at room temperature.
Colorless oil. 85% yield. A mixture containing allyD3 and allyD4
was obtained, and the ratio of allyD3 and allyD4 = 12/88 was esti-
mated by GC-MS. 1H NMR (400 MHz, C6D6): δ 7.90–7.47,
7.29–6.98 (m, C6H5), 6.09–5.55 (CH2CHvCH2), 5.15–4.64
(CH2CHvCH2), 2.09–1.69 (CH2CHvCH2). MS (EI): m/z 649.2
[
[
allylD4]+, 607.2 [allyD4 − C3H5]+, 571.2 [allyD4 − C6H5]+, 549.1
allyD4 − C6H5 − C3H5 + H2O]+, 487.1 [allylD3]+, 447.1 [allyD3
7 For the iron-catalyzed hydrolytic oxidation of hydrosilanes,
see: A. K. Liang-Teo and W. Y. Fan, Chem. Commun., 2014,
50, 7191.
8 (a) M. J. Fuchter, Chem. – Eur. J., 2010, 16, 12286;
(b) S. N. Riduan, Y. Zhang and J. Y. Ying, Angew. Chem., Int.
Ed., 2009, 48, 3322; (c) F. Huang, G. Lu, L. Zhao, H. Li and
Z.-X. Wang, J. Am. Chem. Soc., 2010, 132, 12388.
−
C3H5]+, 409.0 [allyD3 − C6H5]+.
Hydrolysis of methylphenylsilane.18 6 min at room tempera-
CH3
ture, colorless oil, 92% yield. A mixture containing
D3 and
CH3
CH3
CH3
D4 was obtained, and the ratio of
D3 and
D4 = 3/97
was estimated by GC-MS. 1H NMR (400 MHz, C6D6):
δ 7.84–7.49, 7.27–7.04 (m, C6H5), 0.56–0.26 (Me). MS (EI): m/z
9 (a) D.-J. Gao and C. Cui, Chem. – Eur. J., 2013, 19, 11143;
(b) D. Limnios and C. G. Kokotos, ACS Catal., 2013, 3, 2239.
10 (a) T. L. Amyes, S. T. Diver, J. P. Richard, F. M. Rivas and
K. Toth, J. Am. Chem. Soc., 2004, 126, 4366; (b) D. Cringus,
S. Yeremenko, M. S. Pshenichnikov and D. A. Wiersma,
J. Phys. Chem. B, 2004, 108, 10376.
529.2 [CH D4 − CH3]+, 451.1 [CH D4 − C6H5 − CH3]+, 393.2
3
3
CH3
[
D3 − CH3]+, 315.1 [CH3D3 − C6H5 − CH3]+.
Reactions under solvent-free conditions and spectroscopic
data for the Si–O coupling products
11 (a) A. J. Arduengo, H. V. R. Dias, R. L. Harlow and M. Kline,
J. Am. Chem. Soc., 1992, 114, 5530; (b) R. A. Kunetskiy,
I. Cisarova, D. Saman and I. M. Lyapkalo, Chem. – Eur. J.,
2009, 15, 9477; (c) F. Hanasaka, K. I. Fujita and
R. Yamaguchi, Organometallics, 2005, 24, 3422.
Data are given in the ESI.†
Acknowledgements
12 N. Hirone, H. Sanjiki, R. Tanaka, T. Hata and H. Urabe,
Angew. Chem., Int. Ed., 2010, 49, 7762.
13 A. Berkefeld, W. E. Piers and M. Parvez, J. Am. Chem. Soc.,
2010, 132, 10660.
We are grateful to the National Natural Science Foundation of
China (Grant No. 21632006 and 21472098) for financial
support.
14 Y. R. Jorapur and T. Shimada, Synlett, 2012, 1633.
15 A. Albright and R. E. Gawley, Tetrahedron Lett., 2011, 52, 6130.
16 (a) D. S. Fattakhova, V. V. Jouikov and M. G. Voronkov,
J. Organomet. Chem., 2000, 613, 170; (b) T. L. Krasnova, Zh.
Obshch. Khim., 1985, 55, 1528.
Notes and references
1 (a) Silicon-Containing Polymers, ed. R. G. Jones, W. Ando
and J. Chojnowski, Kluwer Academic Publishers,
Dordrecht, The Netherlands, 2000; (b) Silicon in Organic 17 P. Zak, C. Pietraszuk and B. Marciniec, J. Mol. Catal. A:
Organometallic and Polymer Chemistry, ed. M. A. Brook, Chem., 2008, 289, 1.
John Wiley & Sons, New York, 2000; (c) Progress in 18 (a) V. V. Zuev and Z. V. Kalinin, Phosphorus, Sulfur Silicon
Organosilicon
Chemistry,
ed.
B.
Marciniec
and
Relat. Elem., 2003, 178, 1289; (b) M.-H. Yang, H.-W. Liu and
H.-T. Lin, J. Chin. Chem. Soc., 2004, 51, 791; (c) R. K. Harris,
B. J. Kimber, M. D. Wood and A. Holt, J. Organomet. Chem.,
1976, 116, 291; (d) A. A. Bychkova, F. V. Soskov,
A. I. Demchenko, P. A. Storozhenko and A. M. Muzafarov,
Russ. Chem. Bull. Int. Ed., 2011, 60, 2384.
J. Chojnowski, Gordon and Breach Publishers, Amsterdam,
1995; (d) R. Murugavel, A. Voigt, M. G. Walawalkar and
H. W. Roesky, Chem. Rev., 1996, 96, 2205.
2 For reviews on the catalytic hydrolytic oxidation of hydro-
silanes, see: (a) M. Jeon, J. Han and J. Park, ACS Catal.,
This journal is © The Royal Society of Chemistry 2017
Dalton Trans.