ChemComm
Communication
Table 3 Oxidation of 3 to sulfoxides or sulfones with m-CPBAa
2 (a) Sulfur Compounds: Advances in Research and Application, ed.
A. Q. Acton, Scholarly Editions, Atlanta, GA, 2012; (b) E. A. Llardi,
E. Vitaku and J. T. Njardarson, J. Med. Chem., 2014, 57, 2832–2842;
(c) B. R. Smith, C. M. Eastman and J. T. Njardarson, J. Med. Chem.,
2014, 57, 9764–9773; (d) M. Feng, B. Tang, S. H. Liang and X. Jiang,
Curr. Top. Med. Chem., 2016, 16, 1200–1216; (e) P. Das, M. D. Delost,
M. H. Qureshi, D. T. Smith and J. T. Njardarson, J. Med. Chem., 2019,
62, 4265; ( f ) Sulphur-Containing Drugs and Related Organic Com-
pounds, ed. L. A. Damani, Wiley, New York, 1989; (g) Sulfur Chem-
istry. Top. Curr. Chem., ed. X. Jiang, Springer, Cham, 2019.
Yield (%)
Entry
1
R1
R3
Sulfoxide
Sulfone
3 (a) A. Mishra, C.-Q. Ma and P. Bau¨erle, Chem. Rev., 2009, 109,
´
1141–1276; (b) A. R. Murphy and J. M. J. Frechet, Chem. Rev.,
C6H5
Me
4a, 72
4b, 74b
4c, 69
4d, 62
4e, 71
4f, 72
4g, 78
4h, 78
4i, 74
4j, 69
4k, 70
4l, 66b
2007, 107, 1066–1096; (c) K. Takimiya, I. Osaka, T. Mori and
M. Nakano, Acc. Chem. Res., 2014, 47, 1493–1502.
4 (a) J. R. Frau´sto da Silva and R. J. P. Williams, The Biological
Chemistry of the Elements, Oxford University Press, New York,
2001; (b) M. Fontecave, S. Ollagnier-de-Choudens and E. Mulliez,
Chem. Rev., 2003, 103, 2149–2166.
5 For reviews, see: (a) J.-S. Yu, H.-M. Huang, P.-G. Ding, X.-S. Hu, F. Zhou
and J. Zhou, ACS Catal., 2016, 6, 5319–5344; (b) J. Clayden and
P. MacLellan, Beilstein J. Org. Chem., 2011, 7, 582–595; (c) T. Kondo
and T. Mitsudo, Chem. Rev., 2000, 100, 3205–3220; (d) I. P. Beletskaya and
V. P. Ananikov, Chem. Rev., 2011, 111, 1596–1636; (e) P. Chauhan,
S. Mahajan and D. Enders, Chem. Rev., 2014, 114, 8807–8864;
( f ) C. Shen, P. Zhang, Q. Sun, S. Bai, T. S. A. Hor and X. Liu, Chem.
Soc. Rev., 2015, 44, 291–314; (g) C.-F. Lee, Y.-C. Liu and S. S. Badsara,
Chem. – Asian J., 2014, 9, 706–722; (h) D.-Q. Dong, S.-H. Hao, D.-S. Yang,
L.-X. Li and Z.-L. Wang, Eur. J. Org. Chem., 2017, 6576–6592; (i) W. Liu
and X. Zhao, Synthesis, 2013, 2051–2069; ( j) D. Enders, K. Lu¨ttgen and
A. A. Narine, Synthesis, 2007, 959–980.
2
3
4
5
6
7
8
9
4-MeO-C6H4
4-Me-C6H4
4-CF3-C6H4
4-F-C6H4
2-Furyl
t-Bu
(E)-Styrenyl
C6H5
Me
Me
Me
Me
Me
Me
Me
Et
4m, 69
4n, 68
4o, 71
a
For sulfoxides, reaction conditions: 3 (0.3 mmol), m-CPBA (1.0 equiv.),
CH2Cl2 (3 mL), 25 1C, R2 = Boc unless otherwise noted. For sulfones,
reaction conditions: 3 (0.3 mmol), m-CPBA (3.0 equiv.), CH2Cl2 (3 mL),
b
25 1C. Isolated yield. R2 = Ac.
6 A. Thuillier and P. Metzner, Sulfur Reagents in Organic Synthesis,
Academic Press, New York, 1994.
7 For reviews, see: (a) S. Sowmiah, J. M. S. S. Esperança, L. P. N. Rebelo
and C. A. M. Afonso, Org. Chem. Front., 2018, 5, 453–493; (b) J. Jacobs,
E. V. Hende, S. Claessens and N. D. Kimpe, Curr. Org. Chem., 2011,
15, 1340–1362; (c) G. Qiu, Y. Kuang and J. Wu, Adv. Synth. Catal.,
2014, 356, 3483–3504; for some recent examples, see: (d) C. Lv,
C. Wan, S. Liu, Y. Lan and Y. Li, Org. Lett., 2018, 20, 1919–1923;
(e) J. Brioche, C. Meyer and J. Cossy, Org. Lett., 2015, 17, 2800–2803;
( f ) F. Li, J. Chen, Y. Hou, Y. Li, X.-Y. Wu and X. Tong, Org. Lett., 2015,
17, 5376–5379; (g) A. D. Gillie, R. J. Reddy and P. W. Daviesa, Adv.
Synth. Catal., 2016, 358, 226–239, and references therein.
8 (a) D. J. Lee, H. S. Han, J. Shin and E. J. Yoo, J. Am. Chem. Soc., 2014,
136, 11606–11609; (b) D. J. Lee, D. Ko and E. J. Yoo, Angew. Chem.,
Int. Ed., 2015, 54, 13715–13718; (c) J. Shin, J. Lee, D. Ko, N. De and
E. J. Yoo, Org. Lett., 2017, 19, 2901–2904.
9 L. Moafi, S. Ahadi, H. R. Khavasi and A. Bazgir, Synthesis, 2011, 1399–1402.
10 For [4+3] reactions, see: (a) H.-W. Zhao, H.-L. Pang, T. Tian, B. Li, X.-Q.
Chen, X.-Q. Song, W. Meng, Z. Yang, Y.-Y. Liu and Y.-D. Zhao, Adv. Synth.
Catal., 2016, 358, 1826–1832; (b) L. Wei, L. Yao, Z.-F. Wang, H. Li,
H.-Y. Tao and C.-J. Wang, Adv. Synth. Catal., 2016, 358, 3748–3752;
(c) L. Wei, Z.-F. Wang, L. Yao, G. Qiu, H. Tao, H. Li and C.-J. Wang,
Adv. Synth. Catal., 2016, 358, 3955–3959; (d) X.-Q. Hu, J.-R. Chen, S. Gao,
B. Feng, L.-Q. Lu and W.-J. Xiao, Chem. Commun., 2013, 49, 7905–7907;
(e) C. Guo, B. Sahoo, C. G. Daniliuc and F. Glorius, J. Am. Chem. Soc.,
2014, 136, 17402–17405; ( f ) W. Yang, C. Yuan, Y. Liu, B. Mao, Z. Sun and
H. Guo, J. Org. Chem., 2016, 81, 7597–7603; for some recent examples,
see: (g) Z. Wang, Y. Yang, F. Gao, Q. Luo and L. Fang, Org. Lett., 2018, 20,
934–937; (h) L. Wei, Q. Zhu, Z.-M. Song, K. Liu and C.-J. Wang, Chem.
Commun., 2018, 54, 2506–2509; (i) J. Yu and C. Cai, Catal. Commun., 2018,
109, 60–64; ( j) G. Mari, L. D. Crescentini, G. Favi, S. Santeusanio and
F. Mantellini, Eur. J. Org. Chem., 2018, 6548–6556; (k) S.-P. Jiang, Z. Liu,
W.-Q. Lu and G.-W. Wang, Org. Chem. Front., 2018, 5, 1188–1193.
11 B. D. Mert and K. M. Elattar, Curr. Org. Chem., 2018, 22, 386–410.
12 The X-ray structural data were deposited at the Cambridge Crystal-
lographic Data Center. CCDC 1885455 (3a) and 1887981 (4l)†.
13 (a) Y. Li, M. Wang and X. Jiang, ACS Catal., 2017, 7, 7587–7592;
(b) K. Bahrami, M. M. Khodaei and M. S. Arabi, J. Org. Chem., 2010,
75, 6208–6213; (c) S. Patai, Z. Rapoport and C. Stirling, The Chemistry
of Functional Groups: Sulfones and Sulfoxides, Wiley, New York, 1988;
(d) Y. Li, S. A. Rizvi, D. Hu, D. Sun, A. Gao, Y. Zhou, J. Li and X. Jiang,
Angew. Chem., Int. Ed., 2019, 58, 13499–13506.
Scheme 2 Proposed mechanism for the [4+3] cascade cyclization reac-
tion of a-halo hydrazones and pyridinium 1,4-zwitterionic thiolates.
involving S-nucleophilic substitution reaction of halides fol-
lowed by N-Michael addition and retro-Michael addition/Py
extrusion could not be excluded.15
In summary, a new reaction mode of pyridinium 1,4-zwitterionic
thiolates has been developed, and was found to allow expedient
access to 2,5-dihydro-1,4,5-thiadiazepines via a [4+3] cascade
cyclization reaction under mild conditions. Selective oxidations
of 2,5-dihydro-1,4,5-thiadiazepines with m-CPBA were success-
fully achieved, affording libraries of highly functionalized sulf-
oxide and sulfone analogues. The other performances and
reaction modes of pyridinium 1,4-zwitterionic thiolates will be
reported in due course.
We thank the NSFC (21971092, 21472072, 21871018, 21732001,
and 2167201), Program for Changjiang Scholars and Innovative
Research Team in University (PCSIRT: IRT_15R28) and FRFCU
(lzujbky-2019-50, lzujbky-2017-90). We also thank Dr Hanwei Hu
for assistance in polishing the manuscript.
Conflicts of interest
There are no conflicts to declare.
Notes and references
1 (a) A. D. Borthwick, Chem. Rev., 2012, 112, 3641–3716; (b) K. C. Nicolaou,
C. R. H. Hale, C. Nilewski and H. A. Ioannidou, Chem. Soc. Rev., 2012, 41,
5185–5238; (c) H. Liu and X. Jiang, Chem. – Asian J., 2013, 8, 2546–2563;
¨
(d) C.-S. Jiang, W. E. G. Mu¨ller, H. C. Schroder and Y.-W. Guo, Chem. Rev., 14 A. Alizadeh and R. Hosseinpour, Synthesis, 2009, 1960–1962.
2012, 112, 2179–2207; (e) C. Jacob, Nat. Prod. Rep., 2006, 23, 851–863.
15 J. Yu, G.-P. Lu and C. Cai, Chem. Commun., 2017, 53, 5342–5345.
14608 | Chem. Commun., 2019, 55, 14606--14608
This journal is ©The Royal Society of Chemistry 2019