FULL PAPER
Chemistry - A European Journal
10.1002/chem.201800307
nanosheets through a mesostructural transformation and the
crystallization process afterwards. We hole our findings will open
up new possibilities for the elaborate fabrication of three-
dimensionally ordered mesoporous zeolites.
Keywords: Mesoporous zeolite • MFI zeolite • Surfactant self-
assembly • Azobenzene group • Geometrical matching
[
1]
2]
a) A. Corma, Chem. Rev. 1997, 97, 2373-2420; b) C. S. Cundy, P. A.
Cox, Chem. Rev. 2003, 103, 663-702; c) M. E. Davis, R. F. Lobo,
Chem. Mater. 1992, 4, 756-768.
[
a) Y. Tao, H. Kanoh, L. Abrams, K. Kaneko, Chem. Rev. 2006, 106,
Experimental Section
896-910; b) C. M. A. Parlett, K. Wilson, A. F. Lee, Chem. Soc. Rev.
2013, 42, 3876-3893; c) C. Perego, R. Millini, Chem. Soc. Rev. 2013,
42, 3956-3976; d) S. Van Donk, J. H. Bitter, A. Verberckmoes, M.
Synthesis of azobenzene-containing surfactants: 4.0 g (20 mmol) 4-
Phenylazophenol was dissolved in 200 ml of ethanol under nitrogen
atmosphere, then 1.2 g (22 mmol) potassium hydroxide and 30 g 1,10-
dibromodecane (100 mmol) were added into the solution. Refluxing
under 353 K for 20 hours, Cazo-10 was obtained by filter and washed by
deionized water and anhydrous ethanol after the reaction system fully
cooled. 8.4 g (20 mmol) Cazo-10 and 17.2 g (100 mmol) N,N,N',N'-
Tetramethyl-1,6-hexanediamine was dissolved in 200 ml of acetonitrile
and toluene mixed solution and refluxed at 357 K for 20 hours. After
cooling to room temperature, solvent was removed by evaporation and
then the product was filtered, washed with diethyl ether, and dried in a
vacuum. 11.8 g (20 mmol) Cazo-10-6 and 9.9 g (60 mmol) 1-bromohexane
were dissolved in 200 ml of acetonitrile and refluxed for 20 hours. After
evaporation to remove acetonitrile, the product was filtered, washed with
diethyl ether, and dried in a vacuum to obtain Cazo-10-6-6 as a yellow solid.
The synthetic method of other surfactants (Cazo-m-6-6, m= 6, 8, 12) is
Versluijs-Helder, A. Broersma, K. P. de Jong, Angew. Chem. Inter. Ed.
005,44, 1360-1363.
2
[3]
a) C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck,
Nature 1992, 359, 710-712; b) J. S. Beck, J. C. W. J. Vartuli, Roth, M. E.
Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson, E.
W. Sheppard, S. B. McCullen, J. B. Higgins, J. L. Schlenker, J. Am.
Chem. Soc. 1992, 114, 10834-10843.
[
4]
5]
a) J. C. Groen, T. Bach, U. Ziese, A. M. Paulaime-van Donk, K. P. de
Jong, J. A. Moulijn, J. Pérez-Ramírez, J. Am. Chem. Soc. 2005, 127,
10792-10793; b) A. H. Janssen, A. J. Koster, K. P. de Jong, Angew.
Chem. 2001, 113, 1136-1138.
[
a) M. W. Anderson, S. M. Holmes, N. Hanif, C. S. Cundy, Angew.
Chem. 2000, 112, 2819-2822; b) M. Choi, K. Na, J. Kim, Y. Sakamoto,
O. Terasaki, R. Ryoo, Chem. Commun. 2009, 20, 2845-2847; c) K.
Möller, B. Yilmaz, R. M. Jacubinas, U. Müller, T. Bein, J. Am. Chem.
Soc. 2011, 133, 5284-5295; d) W. Chaikittisilp, Y. Suzuki, R. R. Mukti,
T. Suzuki, K. Sugita, K. Itabashi, A. Shimojima, T. Okubo, Angew.
Chem. Int. Ed. 2013, 125, 3439-3443; e) S. P. B. Kremer, C. E. A.
Kirschhock, A. Aerts, K. Villani, J. A. Martens, O. I. Lebedev, G. Van
Tendeloo, Adv. Mater. 2003, 15, 1705-1707; f) S. P. B. Kremer, C. E. A.
Kirschhock, M. Tielen, F. Collignon, P. J. Grobet, P. A. Jacobs, J. A.
Martens, Adv. Funct. Mater. 2002, 12, 286-292.
almost the same as Cazo-10-6-6
.
Synthesis of MMZ: The Cazo-m-6-6 surfactant was obtained in the form of
azo-m-6-62Br. In a typical synthesis, the surfactant, sodium aluminate,
C
NaOH, and distilled water were mixed together and stirred at 333K for
approximately 0.5 h. Tetraethyl orthosilicate was added to yield a molar
composition of 1 Cazo-10-6-6: 25 SiO : 6.3 Na O: 0.3 Al O : 2000 H O, and
2 2 2 3 2
the mixtures were stirred for an additional 3 h at 333K. The crystallisation
process was conducted in Teflon-lined stainless steel autoclaves at 423
K, with the autoclaves tumbling at 40 rpm. The zeolite product was
filtered, washed with distilled water and dried at 353 K overnight, and
then they were calcined in air at 823 K. The mesoporous MFI zeolites
[
6]
a) H. S. Cho, R. Ryoo, Microporous Mesoporous Mater. 2012, 151,
1
07-112; b) W. Fan, M. A. Snyder, S. Kumar, P.-S. Lee, W. C. Yoo, A.
V. McCormick, R. L. Penn, A. Stein, M. Tsapatsis, Nat. Mater. 2008, 7,
84-991; c) J. Wang, M. Yang, W. Shang, X. Su, Q. Hao, H. Chen, X,
9
Mao, Microporous Mesoporous Mater. 2017, 252, 10-16; d) C. J. H.
Jacobsen, C. Madsen, J. Houzvicka, I. Schmidt, A. Carlsson, J. Am.
Chem. Soc. 2000, 122, 7116-7117; e) M. Choi, H. S. Cho, R.
Srivastava, C. Venkatesan, D. H. Choi, R. Ryoo, Nat. Mater. 2006, 5,
718-723; f) H. Wang, T. J. Pinnavaia, Angew. Chem. Int. Ed. 2006, 45,
7603-7606; g) F. Liu, T. Willhammar, L. Wang, L. Zhu, Q. Sun, X. Meng,
W. Carrillo-Cabrera, X. Zou, F. Xiao, J. Am. Chem. Soc. 2012, 134,
4557-4560. h) M. Khaleel, A. J. Wagner, K. A. Mkhoyan, M. Tsapatsis,
Angew. Chem. Int. Ed. 2014, 53, 9456-9461; i) A. Inayat, I. Knoke, E.
Spiecker, W. Schwieger, Angew. Chem. Int. Ed. 2012, 51, 1962-1965.
a) S. L. Burkett, M. E. Davis, J. Phys. Chem. 1994, 98, 4647-4653; b) C.
E. A. Kirschhock, R. Ravishankar, F. Verspeurt, P. J. Grobet, P. A.
Jacobs, J. A. Martens, J. Phys. Chem. B 1999, 103, 4965-4971.
a) R. M. Barrer, Academic Press London 1982, Vol. 15; b) E. M.
Flanigen, J. M. Bennett, R. W. Grose, J. P. Cohen, R. L. Patton, R. M.
Kirchner, J. V. Smith, Nature 1978, 271, 512-516; c) B. Lok,; T. R.
Cannan, C. Messina, Zeolites 1983, 3, 282-291.
(MMZ) templated by Cazo-6-6-6, Cazo-8-6-6, Cazo-10-6-6 and Cazo-12-6-6 were
donated as MMZ-6, MMZ-8, MMZ-10 and MMZ-12, respectively.
Characterization: Powder XRD patterns were recorded on a Rigaku X-
ray diffractometer D/max-IIIA equipped with a Cu K radiation source (40
α
kV, 30 mA). SEM was conducted on JEOL JSM-7401F operating at 1 kV
and a JEOL JSM-7800F operating at 2 kV. HRTEM was performed using
JEOL JEM-2100LaB
of 2.3 Å). Images were recorded with a Keen View CCD camera
resolution of 1376 pixels × 1032 pixels, pixel size of 6.45 μm × 6.45 μm)
6
operating at 200 kV (Cs = 1.0 mm, point resolution
(
[7]
[8]
at 50000−120000× magnification under low-dose conditions. The
nitrogen adsorption/desorption isotherms were measured at 77 K using
1
an ASAP 2010 M+C analyser. H Nuclear Magnetic Resonance (NMR)
spectra were recorded on a Varian MERCURY plus-400 (400 MHz)
spectrometer, and the chemical shifts are reported in ppm relative to the
residual deuterated solvent and the internal standard tetramethylsilane.
[9]
a) M. Choi, K. Na, J. Kim, Y. Sakamoto, O. Terasaki, R. Ryoo, Nature
2009, 461, 246-249; b) K. Na, M. Choi, W. Park, Y. Sakamoto, O.
Terasaki, R. Ryoo, J. Am. Chem. Soc. 2010, 132, 4169-4177; c) K. Na,
C. Jo, J. Kim, K. Cho, J. Jung, Y. Seo, R. J. Messinger, B. F. Chmelka,
R. Ryoo, Science 2011, 333, 328-332.
Acknowledgements
This work was supported by the National Natural Science
Foundation of China (21533002, 21471099, 21571128), the
National Key R&D Program of China (2016YFC0205900), the
National Excellent Doctoral Dissertation of PR China (201454)
and Shanghai Rising-Star Program (17QA1401700).
[10] a) D. Xu, Y. Ma, Z. Jing, L. Han, B. Singh, J. Feng, X. Shen, F. Cao, P.
Oleynikov, H. Sun, O. Terasaki, S. Che, Nat. Commun. 2014, 5, 4262;
b) D. Xu, Z. Jing, F. Cao,; H. Sun, S. Che, Chem. Mater. 2014, 26,
4612-4619.
[11] a) N. A. Ramsahye, B. Slater, Chem. Commun. 2006, 442-444; b) X.
Zhang, D. Liu, D. Xu, S. Asahina, K. A. Cychosz, K. V. Agrawal, Y. Al
This article is protected by copyright. All rights reserved.