Figure 4. Molecular structure of (Sp)-3o according to XRD data with thermal ellipsoids of the 50% probability level.
In summary, for the first time we have demonstrated the synthesis of novel racemic 3,4-dihydroferroceno[c]pyridines via the
Ritter reaction of 2-methyl-1-ferrocenylpropan-1-ol with nitriles in the presence of methansulfonic acid. The reaction is compatible
with a wide range of nitriles, however, some limitations were observed when benzonitriles containing electron-withdrawing groups
were used. Despite modest yields, the simplicity of the procedure and the availability of starting reagents make this method
convenient for the synthesis of functionalized ferroceno[c]pyridines. Selected racemic 3,4-dihydroferroceno[c]pyridines were
successfully separated by preparative HPLC on a Chiralcel OD-H column, and the absolute configuration of the enantiomers was
determined by X-ray crystal structure analysis. Further studies to extend the scope of this reaction to other ferrocenyl alcohols and
investigation of synthetic transformations of the 3,4-dihydroferroceno[c]pyridines obtained are in progress in our laboratory.
Acknowledgments
The work was financially supported by the Russian Foundation for Basic Research (grant 17-03-00546) and partially by the
Program of the Ural Branch of the Russian Academy of Sciences (project 18-3-3-13).
Appendix A. Supplementary data
Supplementary data related to this article can be found at doi 10.1016/j.tetlet.......
References and notes
1. Dai L-X, Hou X-L, Eds. Chiral Ferrocenes in Asymmetric Catalysis: Synthesis and Applications, Wiley‐VCH Verlag GmbH & Co. KGaA, 2010.
doi:10.1002/9783527628841.
2. Toma Š, Csizmadiová J, Mečiarová M, Šebesta R. Dalt Trans. 2014; 43: 16557–16579. doi:10.1039/C4DT01784F.
3. Zhu J-C, Cui D-X, Li Y-D, Jiang R, Chen W-P, Wang P-A. ChemCatChem. 2018; 10: 907–919. doi:10.1002/cctc.201701362.
4. Štěpnička P, Ed. Ferrocenes: Ligands, Materials and Biomolecules, John Wiley & Sons, Ltd: Chichester, UK, 2008. doi:10.1002/9780470985663.
5. Kadkin ON, Galyametdinov YG. Russ Chem Rev. 2012; 81: 675–699. doi:10.1070/RC2012v081n08ABEH004270
6. Takahashi S, Anzai J. Materials (Basel). 2013; 6: 5742–5762. doi:10.3390/ma6125742.
7. Gallei M, Rüttiger C. Chem - A Eur J. 2018; 24: 10006–10021. doi:10.1002/chem.201800412.
8. Rabti A, Raouafi N, Merkoçi A. Carbon N Y. 2016; 108: 481–514. doi:10.1016/j.carbon.2016.07.043.
9. Scottwell SØ, Crowley JD. Chem Commun. 2016; 52: 2451–2464. doi:10.1039/C5CC09569G.
10. Babin VN, Belousov YA, Borisov VI, Gumenyuk V V., Nekrasov YS, Ostrovskaya LA, Sviridova IK, Sergeeva NS, Simenel AA, Snegur L V.
Russ Chem Bull. 2014; 63: 2405–2422. doi:10.1007/s11172-014-0756-7.
11. Braga SS, Silva AMS. Organometallics. 2013; 32: 5626–5639. doi:10.1021/om400446y.
12. Patra M, Gasser G. Nat Rev Chem. 2017; 1: 0066. doi:10.1038/s41570-017-0066.
13. Liu Z. Mini-Reviews Med Chem. 2011; 11: 345–358. doi:10.2174/138955711795305326.
14. Roux C, Biot C. Future Med Chem. 2012; 4: 783–797. doi:10.4155/fmc.12.26.
15. Marion N, Fu GC. In Chiral Ferrocenes in Asymmetric Catalysis, Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2010; 307–
335. doi:10.1002/9783527628841.ch11.
16. Hu B, Meng M, Wang Z, Du W, Fossey JS, Hu X, Deng W-P. J Am Chem Soc. 2010; 132: 17041–17044. doi:10.1021/ja108238a.
17. Lee SY, Murphy JM, Ukai A, Fu GC. J Am Chem Soc. 2012; 134: 15149–15153. doi:10.1021/ja307425g.
18. Mesas-Sánchez L, Díaz-Álvarez AE, Koukal P, Dinér P. Tetrahedron. 2014; 70: 3807–3811. doi:10.1016/j.tet.2014.03.102.
19. Ogasawara M, Wada S, Isshiki E, Kamimura T, Yanagisawa A, Takahashi T, Yoshida K. Org Lett. 2015; 17: 2286–2289.
doi:10.1021/acs.orglett.5b01044.
20. Yasue R, Miyauchi M, Yoshida K. Adv Synth Catal. 2017; 359: 255–259. doi:10.1002/adsc.201600999.
21. Gao DW, Zheng C, Gu Q, You SL. Organometallics. 2015; 34: 4618–4625. doi:10.1021/acs.organomet.5b00730.
22. Csókás D, Zupkó I, Károlyi BI, Drahos L, Holczbauer T, Palló A, Czugler M, Csámpai A. J Organomet Chem. 2013; 743: 130–138.
doi:10.1016/j.jorganchem.2013.06.040.
23. Csókás D, Károlyi BI, Bosze S, Szabó I, Báti G, Drahos L, Csámpai A. J Organomet Chem. 2014; 750: 41–48.
doi:10.1016/j.jorganchem.2013.10.057.
24. Bishop R, in Comprehensive Organic Synthesis II, Elsevier, 2014: 6, 239-295.
25. Bolsakova J, Jirgensons A. Chem Heterocycl Compd. 2017; 53: 1167–1177. doi:10.1007/s10593-018-2189-y.
26. Seeger E, Engel W, Teufel H, Machleidt H. Chem Ber. 1970; 103: 1674–1691. doi:10.1002/cber.19701030604.
27. Smolyak AA, Konyushkin LD, Firgang SI, Shklyaev YuV. Russ J Org Chem. 2016; 52: 1812–1816. doi:10.1134/S1070428016120174.
28. Janin YL, Decaudin D, Monneret C, Poupon M. Tetrahedron. 2004; 60: 5481–5485. doi:10.1016/j.tet.2004.05.004.
29. Mikhailovskii AG, Korchagin D V., Yusov AS, Gashkova O V. Chem Heterocycl Compd. 2017; 53: 1114–1119. doi:10.1007/s10593-017-2180-
z.