270
TUMAKOV et al.
2. J. M. Marraffa, V. Cohen, and M. A. Howland, Am. J.
nitrogen (reaction (9)). The second is the oxidation of
complex (RN2H2)(Cbi(II)) by a second Cbi(III) mole-
cule to form two Cbi(II) molecules and the product of
the two-electron oxidation of isoniazid (reaction (10)).
In both cases, the reaction order with respect to cobin-
amide is two because the rate-determining step
involves two cobinamide molecules.
Health Syst. Pharm. 69, 199 (2012).
3. S. Bradberry and A. Vale, Medicine 35, 562 (2007).
4. P. Preziosi, Curr. Drug. Metab. 8, 839 (2007).
5. P. Wang, Acta Pharm Sin. B 6, 384 (2016).
6. R. C. Watkins, E. L. Hambrick, G. Benjamin, and
S. N. Chavda, J. Natl. Med. Assoc. 82, 57 (1990).
The product of the two-electron oxidation of isoni-
azid (RN2H2) is unstable and rapidly oxidized to ison-
icotinic acid (ROH) and nitrogen by an excess of
cobinamide (reaction (11)).
7. M. L. Sievers and R. N. Herrier, Am. J. Hosp. Pharm
32, 202 (1975).
8. W. P. Tai, H. Yue, and P. J. Hu, Adv. Ther. 25, 1085
(2008).
9. A. I. Scott and C. A. Roessner, Biochem. Soc. Trans.
CONCLUSIONS
30, 613 (2002).
10. K. E. Broderick et al., Exp. Biol. Med. 231, 641 (2006).
11. A. Chan et al., Clin. Toxicol. 48, 709 (2010).
12. D. S. Salnikov, P. N. Kucherenko, I. A. Dereven’kov,
et al., Eur. J. Inorg. Chem., 852 (2014).
13. D. S. Salnikov, S. V. Makarov, R. van Eldik, et al., Eur.
J. Inorg. Chem., 4123 (2014).
It was shown in this work that at near-physiological
pH values, cobinamide can rapidly form a complex
with one or two isoniazid molecules. The binding of
isoniazid to cobinamide under the same conditions
(pH 7.5, 25°C) is approximately 300 times faster than
the binding by aquacobalamin (vitamin B12) [17]. The
complex of Cbi(III) with one isoniazid molecule
(which is formed primarily when the isoniazid and
cobinamide concentrations are close, or when cobin-
amide is in excess) is unstable and forms reduced
cobinamide and products of the oxidation of isonia-
zid: isonicotinic acid, isonicotinamide, and pyridine-
4-carboxaldehyde. The main product of the oxidation
of INH by an excess of cobinamide is isonicotinic
acid, which is less toxic than INH. The formation of
INA also testifies to the ability of cobinamide to oxi-
dize active metabolites (radical forms) of INH, which
form via the oxidation of INH and inactivate biologi-
cal substances [27–29].
14. M. Brenner, S. Benavides, S. B. Mahon, et al., Clin.
Toxicol. 52, 490 (2014).
15. J. Jiang, A. Chan, S. Ali, et al., Sci. Rep. 6, 20831
(2016).
16. K. E. Broderick, V. Singh, S. Zhuang, et al., J. Biol.
Chem. 280, 8678 (2005).
17. S. O. Tumakov, I. A. Dereven’kov, D. S. Salnikov, and
S. V. Makarov, Russ. J. Phys. Chem. A 91, 1839 (2017).
18. W. C. Blackledge, A. Griesel, S. B. Mahon, et al., Anal.
Chem. 82, 4216 (2010).
19. I. A. Dereven’kov, D. S. Salnikov, S. V. Makarov, et al.,
J. Inorg. Biochem. 125, 32 (2013).
Unlike cobinamide, aquacobalamin cannot oxi-
dize INH [17].
20. P. N. Kucherenko, D. S. Salnikov, Thu Thuy Bui, et al.,
Macroheterocycles 6, 262 (2013).
The complex of cobinamide with two INH mole-
cules (which forms in a large excess of isoniazid) is sta-
ble at pH 7.5 and 25°C; there is no oxidation of isoni-
azid.
21. W. C. Blackledge, C. W. Blackledge, A. Griesel, et al.,
Anal. Chem. 82, 4216 (2010).
22. I. A. Dereven’kov, D. S. Salnikov, R. Silaghi-Dumi-
trescu, et al., Coord. Chem. Rev. 309, 68 (2016).
23. J. Dong, Y. Ren, S. Sun, et al., Dalton Trans. 46, 8377
(2017).
ACKNOWLEDGMENTS
24. V. Bogdándi, G. Lente, and I. Fábián, RSC Adv. 5,
This work was supported by the Russian Science
Foundation, project no. 14-23-00204 P. The authors
thank researcher N. Pechnikova at the Laboratory of
Gas Chromatography, Mass Spectrometry, and EPR
Spectrometry, Shared Scientific Resource Center,
Ivanovo State University of Chemistry and Technol-
ogy, Ivanovo, Russia, for her help in analyzing the
products of the oxidation of isoniazid via gas chroma-
tography–mass spectrometry.
67500 (2015).
25. K. Johnsson and P. G. Schultz, J. Am. Chem. Soc. 116,
7425 (1994).
26. M. J. Hynes, Proc. R. Irish Acad., Sect. B: Biol., Geol.
Chem. Sci. 89, 435 (1989).
27. B. K. Sinha and R. P. Mason, J. Drug. Metab. Toxicol.
5, 168 (2014).
28. I. Metushi, J. Uetrecht, and E. Phillips, Br. J. Clin.
Pharmacol. 81, 1030 (2016).
29. L. V. Forbes et al., Biochem. Pharmacol. 84, 949
REFERENCES
(2012).
1. Reference Guide for Emergency Doctor, Ed. by A. L. Vertkin
Translated by V. Glyanchenko
(GEOTAR-MED, Moscow, 2001) [in Russian].
RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A
Vol. 93
No. 2
2019