Please do not adjust margins
ChemComm
Page 4 of 4
DOI: 10.1039/C6CC02578A
COMMUNICATION
Journal Name
Angew. Chem. Int. Ed., 2009, 48, 5439; E. L. Spitler, W. R.
Dichtel, Nat. Chem., 2010, , 672; X. Ding, L. Chen, Y.
Honsho, X. Feng, O. Saengsawang, J. Guo, A. Saeki, S. Seki, S.
Irle, S. Nagase, V. Parasuk and D. Jiang, J. Am. Chem. Soc.,
2011, 133, 14510.
conditions. In general, the substrate scope of the MPU
catalysed Henry reaction is limited to only benzaldehyde
derivatives with electron withdrawing groups, however with
significantly high yields (Table 2). Unlike the Knoevenagel
reaction, the nitroaldol reaction between 4-nitrobenzaldehyde
and nitromethane did not proceed in THF/MeCN signifying the
importance of protic solvent in the MPU catalysed Henry
reaction.
2
5
6
D. F. Perepichka and F. Rosei, Science, 2009, 323, 216; J. F.
Dienstmaier, D. D. Medina, M. Dogru, P. Knochel and T. Bein,
ACS Nano, 2012,
Heckl and M. Lackinger, ACS Nano, 2011,
6
, 7234;, A. Lyapin, S. Reichlmaier, W. M.
5, 9737.
J. Shi, Y. Wang, W. Yang, Y. Tang and Z. Xie, Chem. Soc. Rev.,
2015, 44, 8877; A. Dhakshinamoorthy, M. Opanasenko, J.
Cejka and H. Garcia, Catal. Sci. Technol., 2013, 3, 2509; A. H.
Chughtai, N. Ahmad, H. A. Younus, A. Laypkov and F.
Verpoort, Chem. Soc. Rev., 2015, 44, 6804; J. Liu, L. Chen, H.
Cui, J. Zhang, L. Zhang and C.-Y. Su, Chem. Soc. Rev., 2014,
43, 6011.
Hot filtration tests have been performed for the Knoevenagel
and Henry reactions and the possibility of leaching of some of
the active sites from the solid catalyst to the liquid phase has
been ruled out (see ESI† for details).
The catalyst was recycled and used for two consecutive runs
with no significant loss in activity for the Knoevenagel reaction
between 4-nitrobenzaldehyde with malononitrile and for the
7
8
F. Freeman, Chem. Rev., 1980, 80, 329; L. F. Tietze, Chem.
Rev., 1996, 96, 115.
S. Hasegawa, S. Horike, R. Matsuda, S. Furukawa, K.
Mochizuki, Y. Kinoshita and S. Kitagawa, J. Am. Chem. Soc.,
2007, 129, 2607; Q. R. Fang, S. Gu, J. Zheng, Z. B. Zhuang, S.
L. Qiu and Y. S. Yan, Angew. Chem., Int. Ed., 2014, 53, 2878;
Kim, A. Vimont, M. Daturi, C. Serre and G. Férey, Angew.
Chem., Int. Ed., 2008, 47, 4144; U. P. N. Tran, K. K. A. Le, and
Henry
reaction
between
4-nitrobenzaldehyde
with
nitromethane (Fig. S18, see ESI† for details). The recovered
catalyst has been characterized by FT-IR, PXRD, SEM, CHNS
analysis and nitrogen sorption measurements (Fig. S11-S14,
and Table S1-S2, ESI†). No significant changes have been
observed in the FT-IR, PXRD, SEM and CHNS analysis data of
the recycled MPU, only a slight decrease in BET specific surface
area has been observed after the first and second catalytic run.
In conclusion, we have reported a catalytically active new
microporous polyurethane material with sponge like
morphology obtained by solvothermal synthesis in DMSO. Due
to its confined microporosity and the presence of mildly basic
urethane (carbamate) functional groups along the pore walls,
the MPU showed catalytic efficiency with pronounced size
selectivity in the Knoevenagel condensation of aromatic
aldehydes with malononitrile or methylcyanoacetate. In the
related nitroaldol (Henry) reaction involving nitromethane as
the nucleophile, the catalyst showed high substrate selectivity
as significant yields of β-nitroalkanol product could only be
obtained with benzaldehyde derivatives having electron
withdrawing groups. Overall, this work represents the first
example of heterogeneous catalysis by a porous polyurethane
material which will encourage the development of new
functional porous polyurethanes for the catalysis of several
other important reactions.
N. T. S. Phan, ACS Catal., 2011,
Oliver, S. Roy and L. Öhrströma, Dalton Trans., 2015, 44
1, 120; A. Karmakar, C. L.
,
10156; A. Karmakar, S. Hazra, M. Fátima C. G. da Silva, A.
Paul and A. J. L. Pombeiro, CrystEngComm, 2016, 18, 1337.
R. Xing, H. Wu, X. Li, Z. Zhao, Y. Liu, L. Chen and P. Wu, J.
Mater. Chem., 2009, 19, 4004; Z. Gao, J. Zhou, F. Cui, Z. H.
Yan Zhu and J. Shi, Dalton Trans., 2010, 39, 11132; F. Shang,
J. Sun, S. Wu, Y. Yang, Q. Kan and J. Guan, Micropor.
Mesopor. Mater., 2010, 134, 44; S. H. Zhao, X. J. Wang and L.
W. Zhang, RSC. Adv., 2013, 3, 11691; A. Villa, J. P. Tessonnier,
9
O. Majoulet, D. S. Su and R. Schlogt, ChemSusChem, 2010, 3,
241; J. Xu, Y. Wang, J.-K. Shang, Q. Jiang and Y.-X. Li, DOI:
10.1039/c5cy01747e; J. Xu, T. Chen, J.-K. Shang, K.-Z. Long,
Y.-X. Li, Micropor. Mesopor. Mater., 2015, 211, 105; N. Kan-
nari, S. Okamura, S.-I. Fujita, J.-I. Ozaki and M. Arai, Adv.
Synth. Catal., 2010, 352, 1476.
10 (a) Q. Fang, S. Gu, J. Zheng, Z. Zhuang, S. Qiu and Yushan Yan,
Angew. Chem. Int. Ed., 2014, 53, 2878; (b) V. M. Suresh, S.
Bonakala, H. S. Atreya, S. Balasubramanian, and T. K. Maji,
ACS Appl. Mater. Interfaces, 2014, 6, 4630.
11 J. Guan, K. L. Fujimoto, M. S. Sacks and W. R. Wagner,
Biomaterials, 2005, 26, 3961; Y.-C. Wang, F. Fang, Y.-K. Wu,
X.-L. Ai, T. Lan, R.-C. Liang, Y. Zhang, N. M. Trishul, M. He, C.
You, C. Yu and H. Tan, RSC Adv., 2016,
12 X. Wang and E. Ruckenstein, Biotechnol. Prog., 1993,
A. Koh, Y. Lu, and M. H. Schoenfisch, Anal. Chem. 2013, 85
10488; X. Zhang, Z. Du, W. Zou, H. Li, C. Zhang, S. Li, and W.
Guo, RSC Adv., 2015, , 65890.
6, 3840.
9, 661;
,
Notes and references
5
13 M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F.
Rodriguez-Reinoso, J. Rouquerol and K. S. W. Sing, Pure Appl.
Chem., 2015, 87, 1051; K. S. W. Sing, D. H. Everett, R. A. W.
Haul, L. Moscou, R. A. Pierotti, J. Rouquerol and T.
Siemieniewska, Pure Appl. Chem., 1985, 57, 603.
14 A. C. Sudik, A. P. Cote, A. G. Wong-Foy, M. O’Keeffe and O.
M. Yaghi, Angew. Chem., Int. Ed., 2006, 45, 2528, and
references therein.
15 (a) Y. Luan, Y. Qi, H. Gao, R. S. Andriamitantsoa, N. Zheng and
G. Wang, J. Mater. Chem. A, 2015, 3, 17320; (b) M. H.
Moemeni, M. A. Amrollahi and F. Tamaddon, Bulg. Chem.
Commun., 2015, 47, 7.
16 A. Pande, K. Ganesan, A. K. Jain, P. K. Gupta and R. C.
1
2
S.-Y. Ding and W. Wang, Chem. Soc. Rev., 2013, 42, 548; X.
Feng, X. Ding and D. Jiang, Chem. Soc. Rev., 2012, 41, 6010;
Z. Xiang, D. Cao and L. Dai, Polym. Chem., 2015, 6, 1896.
B. G. Hauser, O. K. Farha, J. Exley and J. T. Hupp, Chem.
Mater., 2013, 25, 12; W. Lu, D. Yuan, D. Zhao, C. I. Schilling,
O. Plietzsch, T. Muller, S. Braese, J. Guenther, J. Bluemel, R.
Krishna, Z. Li and H.-C. Zhou, Chem. Mater., 2010, 22, 5964;
A. Bhunia, I. Boldog, A. Möller and C. Janiak, J. Mater. Chem.
A, 2013, 1, 14990; A. Bhunia, V. Vasylyeva and C. Janiak,
Chem. Commun., 2013, 49, 3961.
P. Kaur, J. T. Hupp, and S. T. Nguyen, ACS Catal., 2011, 1,
819; Y. Zhang, and S. N. Riduan, Chem. Soc. Rev., 2012, 41,
3
4
2083.
S. Wan, J. Guo, J. Kim, H. Ihee, D. Jiang, Angew. Chem., Int.
Ed., 2008, 120, 8958; S. Wan, J. Guo, J. Kim, H. Ihee, D. Jiang,
Malhotra, Org. Process Res. Dev. 2005, 9, 133.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins